Роль звездчатых клеток в формировании ниши прогениторных клеток печени
https://doi.org/10.20538/1682-0363-2024-1-126-133
Аннотация
Процессы пролиферации и дифференцировки прогениторных/стволовых клеток в организме обеспечиваются специфическим микроокружением – нишей стволовых клеток. Для всех ниш определены универсальные компоненты – поддерживающие клетки, внеклеточный матрикс и растворимые биологические факторы. Ниша является динамической системой, активность которой зависит от запросов регенерации.
В обзоре представлены данные о строении ниши стволовых клеток печени, одном из ее основных компонентов – звездчатых клетках и их роли в патологии.
Об авторах
В. В. ЖдановРоссия
Жданов Вадим Вадимович – д-р мед. наук, чл.-корр. РАН, директор
634028, г. Томск, пр. Ленина, 3
А. В. Чайковский
Россия
Чайковский Александр Васильевич – канд. мед. наук, науч. сотрудник, лаборатория патофизиологии и экспериментальной терапии
634028, г. Томск, пр. Ленина, 3
Э. С. Пан
Россия
Пан Эдгар Сергеевич – канд. биол. наук, ст. науч. сотрудник, лаборатория регуляции репаративных процессов
125315, г. Москва, ул. Балтийская, 8
Список литературы
1. Гольдберг Е.Д., Дыгай А.М., Жданов В.В. Роль гемопоэзиндуцирующего микроокружения в регуляции кроветворения при цитостатических миелосупрессиях. Томск: STT, 1999:128.
2. Дыгай А.М., Жданов В.В. Теория регуляции кроветворения. М.: Изд-во РАМН, 2012:140.
3. Fuchs E., Blau H.M. tissue stem cells: architects of their niches. Cell Stem Cell. 2020;27(4):532–556. DOI: 10.1016/j.stem.2020.09.011.
4. Martinez P., Ballarin L., Ereskovsky A.V. et al. Articulating the “stem cell niche” paradigm through the lens of non-model aquatic invertebrates. BMC Biol. 2022;(1):20:23. DOI: 10.1186/s12915-022-01230-5.
5. Юшков Б.Г., Климин В.Г. Повреждение и регенерация. М., 2017:132.
6. Mannino G., Russo C., Maugeri G. et al. Adult stem cell niches for tissue homeostasis. J. Cell Physiol. 2022;237(1):239–257. DOI: 10.1002/jcp.30562.
7. Hicks M.R., Pyle A.D. The emergence of the stem cell niche. Trends Cell Biol. 2023;33(2):112–123. DOI: 10.1016/j.tcb.2022.07.003.
8. Urbán N., Cheung T.H. Stem cell quiescence: the challenging path to activation. Development. 2021;148(3). DOI: 10.1242/dev.165084.
9. Brunet A., Goodell M.A., Rando T.A. Ageing and rejuvenation of tissue stem cells and their niches. Nat. Rev. Mol. Cell Biol. 2023;(1):45–62. DOI: 10.1038/s41580-022-00510-w.
10. Нимирицкий Π.П., Сагарадзе Г.Д., Ефименко А.Ю., Макаревич П.И., Ткачук В.А. Ниша стволовой клетки. Цитология. 2018;60(8):575–586.
11. Ceafalan L.C., Enciu A.M., Fertig T.E. et al. Heterocellular molecular contacts in the mammalian stem cell niche. Eur. J. Cell Biol. 2018;97(6):442–461. DOI: 10.1016/j.ejcb.2018.07.001.
12. Fujiwara H., Ferreira M., Donati G. et al. The basement membrane of hair follicle stem cells is a muscle cell niche. Cell. 2011;144(4):577–589. DOI: 10.1016/j.cell.2011.01.014.
13. Sugiyama T., Omatsu Y., Nagasawa T. Niches for hematopoietic stem cells and immune cell progenitors. Int. Immunol. 2019;31(1):5–11. DOI: 10.1093/intimm/dxy058.
14. Raaijmakers M.H.G.P. Aging of the hematopoietic stem cell niche: an unnerving matter. Cell Stem Cell. 2019;25(3):301– 303. DOI: 10.1016/j.stem.2019.08.008.
15. Segel M., Neumann B., Hill M.F.E. et al. Niche stiffness underlies the ageing of central nervous system progenitor cells. Nature. 2019;573(7772):130–134. DOI: 10.1038/s41586-019-1484-9.
16. Deng Y., Xia B., Chen Z. et al. Stem cell-based therapy strategy for hepatic fibrosis by targeting intrahepatic cells. Stem Cell Rev. Rep. 2022;18(1):77–93. DOI: 10.1007/s12015-021-10286-9.
17. Brizzi M.F., Tarone G., Defilippi P. Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr. Opin. Cell Biol. 2012;24(5):645651. DOI: 10.1016/j.ceb.2012.07.001.
18. Stanton A.E., Tong X., Yang F. Extracellular matrix type modulates mechanotransduction of stem cells. Acta Biomater. 2019;96:310–320. DOI: 10.1016/j.actbio.2019.06.048.
19. Lee-Thedieck C., Schertl P., Klein G. The extracellular matrix of hematopoietic stem cell niches. Adv. Drug Deliv. Rev. 2022;181:114069. DOI: 10.1016/j.addr.2021.114069.
20. Sánchez-Romero N., Sainz-Arnal P., Pla-Palacín I. et al. The role of extracellular matrix on liver stem cell fate: A dynamic relationship in health and disease. Differentiation. 2019;106:49–56. DOI: 10.1016/j.diff.2019.03.001.
21. Humphrey J.D., Dufresne E.R., Schwartz M.A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 2014;15(12):802–812. DOI: 10.1038/nrm3896.
22. Гольдберг Е.Д., Дыгай А.М., Хлусов И.А. Роль вегетативной нервной системы в регуляции гемопоэза. Томск, 1997:218.
23. Oben J.A., Diehl A.M. Sympathetic nervous system regulation of liver repair. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 2004;280(1):874–883. DOI: 10.1002/ar.a.20081.
24. Cassiman D., Denef C., Desmet V.J. et al. Human and rat hepatic stellate cells express neurotrophins and neurotrophin receptors. Hepatology. 2001;33(1):148–158. DOI: 10.1053/jhep.2001.20793.
25. Comazzetto S., Shen B., Morrison S.J. Niches that regulate stem cells and hematopoiesis in adult bone marrow. Dev. Cell. 2021;56(13):1848–1860. DOI: 10.1016/j.devcel.2021.05.018.
26. Hassanshahi M., Hassanshahi A., Khabbazi S.et al. Bone marrow sinusoidal endothelium: damage and potential regeneration following cancer radiotherapy or chemotherapy. Angiogenesis. 2017; 20(4):427–442. DOI: 10.1007/s10456-017-9577-2.
27. Poisson J., Lemoinne S., Boulanger C. et al. Liver sinusoidal endothelial cells: Physiology and role in liver diseases. J. Hepatol. 2017;66(1):212–227. DOI: 10.1016/j.jhep.2016.07.009.
28. Craig D.J., James A.W., Wang Y.et al. Blood vessel resident human stem cells in health and disease. Stem Cells Transl. Med. 2022;11(1):35–43. DOI: 10.1093/stcltm/szab001.
29. Lafoz E., Ruart M., Anton A. et al. The Endothelium as a driver of liver fibrosis and regeneration. Cells. 2020;9(4):929. DOI: 10.3390/cells9040929.
30. Li K.N., Tumbar T. Hair follicle stem cells as a skin‐organizing signaling center during adult homeostasis. EMBO J. 2021;40(11):e107135. DOI: 10.15252/embj.2020107135.
31. Duckworth C.A. Identifying key regulators of the intestinal stem cell niche. Biochem. Soc. Trans. 2021;49(5):2163–2176. DOI: 10.1042/BST20210223.
32. Sousa-Victor P., García-Prat L., Muñoz-Cánoves P. Control of satellite cell function in muscle regeneration and its disruption in ageing. Nat. Rev. Mol. Cell Biol. 2022;23(3):204–226. DOI: 10.1038/s41580-021-00421-2.
33. Ge J.Y., Zheng Y.W., Tsuchida T. et al. Hepatic stellate cells contribute to liver regeneration through galectins in hepatic stem cell niche. Stem Cell Res. Ther. 2020;11(1):425. DOI: 10.1186/s13287-020-01942-x.
34. Afelik S., Rovira M. Pancreatic β-cell regeneration: Facultative or dedicated progenitors? Mol. Cell. Endocrinol. 2017; 445:8594. DOI: 10.1016/j.mce.2016.11.008.
35. Li W., Li L., Hui L. Cell plasticity in liver regeneration. Trends Cell Biol. 2020;30(4):329–338. DOI: 10.1016/j.tcb.2020.01.007.
36. Michalopoulos G.K., Bhushan B. Liver regeneration: biological and pathological mechanisms and implications. Nat. Rev. Gastroenterol. Hepatol. 2021;18(1):40–55. DOI: 10.1038/s41575-020-0342-4.
37. Overi D., Carpino G., Franchitto A. et al. Hepatocyte injury and hepatic stem cell niche in the progression of non-alcoholicsteatohepatitis. Cells. 2020;9(3):590. DOI: 10.3390/cells9030590.
38. Lanzoni G., Cardinale V., Carpino G. The hepatic, biliary, and pancreatic network of stem/progenitor cell niches in humans: A new reference frame for disease and regeneration. Hepatology. 2016;64(1):277–286. DOI: 10.1002/hep.28326.
39. Miyajima A., Tanaka M., Itoh T. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Stem Cell. 2014;14(5):561–574. DOI: 10.1016/j.stem.2014.04.010.
40. Itoh T., Miyajima A. Liver regeneration by stem/progenitor cells. Hepatology. 2014;59(4):1617–1626. DOI: 10.1002/hep.26753.
41. Bynigeri R.R., Jakkampudi A., Jangala R. et al. Pancreatic stellate cell: Pandora’s box for pancreatic disease biology. World J. Gastroenterol. 2017;23(3):382–405. DOI: 10.3748/wjg.v23.i3.382.
42. Kordes C., Bock H.H., Reichert D. Hepatic stellate cells: current state and open questions. Biol. Chem. 2021;402(9):1021– 1032. DOI: 10.1515/hsz-2021-0180.
43. Gaça M.D., Pickering J.A., Arthur M.J. et al. Human and rat hepatic stellate cells produce stem cell factor: a possible mechanism for mast cell recruitment in liver fibrosis. J. Hepatol. 1999;30(5):850–858. DOI: 10.1016/s0168-8278(99)80139-1.
44. Lorenzini S., Bird T.G., Boulter L. et al. Characterisation of a stereotypical cellular and extracellular adult liver progenitor cell niche in rodents and diseased human liver. Gut. 2010;59(5):645–654. DOI: 10.1136/gut.2009.182345.
45. Kamm D.R., McCommis K.S. Hepatic stellate cells in physiology and pathology. J. Physiol. 2022;600(8):1825–1837. DOI: 10.1113/JP281061.
46. Hayes A.J., Tudor D., Nowell M.A. et al. Chondroitin sulfate sulfation motifs as putative biomarkers for isolation of articular cartilage progenitor cells. J. Histochem. Cytochem. 2008;56(2):125–138. DOI: 10.1369/jhc.7A7320.2007.
47. Wang Y., Cui C.-B., Yamauchi M. et al. Lineage restriction of human hepatic stem cells to mature fates is made efficient by tissue-specific biomatrix scaffolds. Hepatology. 2011;53(1):293–305. DOI: 10.1002/hep.24012.
48. Harrill J.A., Parks B.B., Wauthier E.et al. Lineage-dependent effects of aryl hydrocarbon receptor agonists contribute to liver tumorigenesis. Hepatology. 2015;61(2):548–560. DOI: 10.1002/hep.27547.
49. Lee Y.A., Wallace M.C., Friedman S.L. Pathobiology of liver fibrosis: a translational success story. Gut. 2015;64(5):830– 841. DOI: 10.1136/gutjnl-2014-306842.
50. Schönberger K., Tchorz J.S. Hepatic stellate cells: From bad reputation to mediators of liver homeostasis. Sci. Signal. 2023;16(787):eadh5460. DOI: 10.1126/scisignal.adh5460.
51. Blaner W.S., O’Byrne S.M., Wongsiriroj N. et al. Hepatic stellate cell lipid droplets: a specialized lipid droplet for retinoid storage. Biochim. Biophys. Acta. 2009;1791(6):467–473. DOI: 10.1016/j.bbalip.2008.11.001.
52. Gupta G., Khadem F., Uzonna J.E. Role of hepatic stellate cell (HSC)-derived cytokines in hepatic inflammation and immunity. Cytokine. 2019;124:154542–154542. DOI: 10.1016/j.cyto.2018.09.004.
53. Melton A.C., Yee H.F. Hepatic stellate cell protrusions couple platelet-derived growth factor-BB to chemotaxis. Hepatology. 2007;45(6):1446–1453. DOI: 10.1002/hep.21606.
54. Ефремова Н.А., Грешнякова В.А., Горячева Л.Г. Современные представления о патогенетических механизмах фиброза печени. Журнал инфектологии. 2023;15(1):16– 24. DOI: /10.22625/2072-6732-2023-15-1-16-24.
55. Tsuchida T., Friedman S.L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 2017;14(7):397– 411. DOI: 10.1038/nrgastro.2017.38.
56. Krizhanovsky V., Yon M., Dickins R.A. et al. Senescence of activated stellate cells limits liver fibrosis. Cell. 2008;134(4):657–667. DOI: 10.1016/j.cell.2008.06.049.
57. Kent G., Gay S., Inouye T., et al. Vitamin A-containing lipocytes and formation of type III collagen in liver injury. Proc. Natl. Acad. Sci. USA. 1976;73(10):3719–3722. DOI: 10.1073/pnas.73.10.3719.
58. Roskams T. Different types of liver progenitor cells and their niches. J. Hepatol. 2006;45(1):1–4. DOI: 10.1016/j.jhep.2006.05.002.
59. Chen L., Zhang W., Zhou Q. et al. HSCs play a distinct role in differentphases of oval cell-mediated liver regeneration. Cell. Biochem. Funct. 2012;30(7):588–596. DOI: 10.1002/cbf.2838.
60. Kitto L.J., Henderson N.C. Hepatic stellate cell regulation of liver regeneration and repair. Hepatol. Commun. 2021;5(3):358–370. DOI: 10.1002/hep4.1628.
61. Скурихин Е.Г., Жукова М.А., Пан Э.С., Ермакова Н.Н., Першина О.В., Пахомова А.В. и др. Возрастные особенности реакции печени и стволовых клеток при моделировании цирроза печени. Клеточные технологии в биологии и медицине. 2021;1:24–30.
62. Cha J.J., Mandal C., Ghee J.Y. et al. Inhibition of renal stellate cell activation reduces renal fibrosis. Biomedicines. 2020;8(10):431. DOI: 10.3390/biomedicines8100431.
63. Choi J., Son Y., Moon J.W., Park D.W., Kim Y.S., Oh J. Fusion protein of RBP and albumin domain III reduces lung fibrosis by inactivating lung stellate cells. Biomedicines. 2023;11(7):2007. DOI: 10.3390/biomedicines11072007.
64. Pintilie D.G., Shupe T.D., Oh S.H. et al. Hepatic stellate cells’ involvement in progenitor-mediated liver regeneration. Lab. Invest. 2010;90(8):1199–1208. DOI: 10.1038/labinvest.2010.88.
Рецензия
Для цитирования:
Жданов В.В., Чайковский А.В., Пан Э.С. Роль звездчатых клеток в формировании ниши прогениторных клеток печени. Бюллетень сибирской медицины. 2024;23(1):126-133. https://doi.org/10.20538/1682-0363-2024-1-126-133
For citation:
Zhdanov V.V., Chaikovskii A.V., Pan E.S. Hepatic stellate cells and their role in the formation of the progenitor cell niche. Bulletin of Siberian Medicine. 2024;23(1):126-133. https://doi.org/10.20538/1682-0363-2024-1-126-133