Preview

Bulletin of Siberian Medicine

Advanced search

Hepatic stellate cells and their role in the formation of the progenitor cell niche

https://doi.org/10.20538/1682-0363-2024-1-126-133

Abstract

The processes of proliferation and differentiation of progenitor and stem cells in the body are ensured by a specific microenvironment, the stem cell niche. Universal components have been identified for all niches: supporting cells, extracellular matrix, and soluble biological factors. A niche is a dynamic system whose activity depends on regeneration needs.

The review presents data on the structure of the hepatic stem cell niche and one of its main components – stellate cells and their role in pathology.

 

About the Authors

V. V. Zhdanov
Goldberg Research Institute of Pharmacology and Regenerative Medicine (GRIPRM), Tomsk National Research Medical Center (NRMC) of the Russian Academy of Sciences
Russian Federation

3, Lenina Av., Tomsk, 634028



A. V. Chaikovskii
Goldberg Research Institute of Pharmacology and Regenerative Medicine (GRIPRM), Tomsk National Research Medical Center (NRMC) of the Russian Academy of Sciences
Russian Federation

3, Lenina Av., Tomsk, 634028



E. S. Pan
Research Institute of General Pathology and Pathophysiology
Russian Federation

8, Baltiyskaya Str., Moscow, 125315



References

1. Гольдберг Е.Д., Дыгай А.М., Жданов В.В. Роль гемопоэзиндуцирующего микроокружения в регуляции кроветворения при цитостатических миелосупрессиях. Томск: STT, 1999:128.

2. Дыгай А.М., Жданов В.В. Теория регуляции кроветворения. М.: Изд-во РАМН, 2012:140.

3. Fuchs E., Blau H.M. tissue stem cells: architects of their niches. Cell Stem Cell. 2020;27(4):532–556. DOI: 10.1016/j.stem.2020.09.011.

4. Martinez P., Ballarin L., Ereskovsky A.V. et al. Articulating the “stem cell niche” paradigm through the lens of non-model aquatic invertebrates. BMC Biol. 2022;(1):20:23. DOI: 10.1186/s12915-022-01230-5.

5. Юшков Б.Г., Климин В.Г. Повреждение и регенерация. М., 2017:132.

6. Mannino G., Russo C., Maugeri G. et al. Adult stem cell niches for tissue homeostasis. J. Cell Physiol. 2022;237(1):239–257. DOI: 10.1002/jcp.30562.

7. Hicks M.R., Pyle A.D. The emergence of the stem cell niche. Trends Cell Biol. 2023;33(2):112–123. DOI: 10.1016/j.tcb.2022.07.003.

8. Urbán N., Cheung T.H. Stem cell quiescence: the challenging path to activation. Development. 2021;148(3). DOI: 10.1242/dev.165084.

9. Brunet A., Goodell M.A., Rando T.A. Ageing and rejuvenation of tissue stem cells and their niches. Nat. Rev. Mol. Cell Biol. 2023;(1):45–62. DOI: 10.1038/s41580-022-00510-w.

10. Нимирицкий Π.П., Сагарадзе Г.Д., Ефименко А.Ю., Макаревич П.И., Ткачук В.А. Ниша стволовой клетки. Цитология. 2018;60(8):575–586.

11. Ceafalan L.C., Enciu A.M., Fertig T.E. et al. Heterocellular molecular contacts in the mammalian stem cell niche. Eur. J. Cell Biol. 2018;97(6):442–461. DOI: 10.1016/j.ejcb.2018.07.001.

12. Fujiwara H., Ferreira M., Donati G. et al. The basement membrane of hair follicle stem cells is a muscle cell niche. Cell. 2011;144(4):577–589. DOI: 10.1016/j.cell.2011.01.014.

13. Sugiyama T., Omatsu Y., Nagasawa T. Niches for hematopoietic stem cells and immune cell progenitors. Int. Immunol. 2019;31(1):5–11. DOI: 10.1093/intimm/dxy058.

14. Raaijmakers M.H.G.P. Aging of the hematopoietic stem cell niche: an unnerving matter. Cell Stem Cell. 2019;25(3):301– 303. DOI: 10.1016/j.stem.2019.08.008.

15. Segel M., Neumann B., Hill M.F.E. et al. Niche stiffness underlies the ageing of central nervous system progenitor cells. Nature. 2019;573(7772):130–134. DOI: 10.1038/s41586-019-1484-9.

16. Deng Y., Xia B., Chen Z. et al. Stem cell-based therapy strategy for hepatic fibrosis by targeting intrahepatic cells. Stem Cell Rev. Rep. 2022;18(1):77–93. DOI: 10.1007/s12015-021-10286-9.

17. Brizzi M.F., Tarone G., Defilippi P. Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr. Opin. Cell Biol. 2012;24(5):645651. DOI: 10.1016/j.ceb.2012.07.001.

18. Stanton A.E., Tong X., Yang F. Extracellular matrix type modulates mechanotransduction of stem cells. Acta Biomater. 2019;96:310–320. DOI: 10.1016/j.actbio.2019.06.048.

19. Lee-Thedieck C., Schertl P., Klein G. The extracellular matrix of hematopoietic stem cell niches. Adv. Drug Deliv. Rev. 2022;181:114069. DOI: 10.1016/j.addr.2021.114069.

20. Sánchez-Romero N., Sainz-Arnal P., Pla-Palacín I. et al. The role of extracellular matrix on liver stem cell fate: A dynamic relationship in health and disease. Differentiation. 2019;106:49–56. DOI: 10.1016/j.diff.2019.03.001.

21. Humphrey J.D., Dufresne E.R., Schwartz M.A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 2014;15(12):802–812. DOI: 10.1038/nrm3896.

22. Гольдберг Е.Д., Дыгай А.М., Хлусов И.А. Роль вегетативной нервной системы в регуляции гемопоэза. Томск, 1997:218.

23. Oben J.A., Diehl A.M. Sympathetic nervous system regulation of liver repair. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 2004;280(1):874–883. DOI: 10.1002/ar.a.20081.

24. Cassiman D., Denef C., Desmet V.J. et al. Human and rat hepatic stellate cells express neurotrophins and neurotrophin receptors. Hepatology. 2001;33(1):148–158. DOI: 10.1053/jhep.2001.20793.

25. Comazzetto S., Shen B., Morrison S.J. Niches that regulate stem cells and hematopoiesis in adult bone marrow. Dev. Cell. 2021;56(13):1848–1860. DOI: 10.1016/j.devcel.2021.05.018.

26. Hassanshahi M., Hassanshahi A., Khabbazi S.et al. Bone marrow sinusoidal endothelium: damage and potential regeneration following cancer radiotherapy or chemotherapy. Angiogenesis. 2017; 20(4):427–442. DOI: 10.1007/s10456-017-9577-2.

27. Poisson J., Lemoinne S., Boulanger C. et al. Liver sinusoidal endothelial cells: Physiology and role in liver diseases. J. Hepatol. 2017;66(1):212–227. DOI: 10.1016/j.jhep.2016.07.009.

28. Craig D.J., James A.W., Wang Y.et al. Blood vessel resident human stem cells in health and disease. Stem Cells Transl. Med. 2022;11(1):35–43. DOI: 10.1093/stcltm/szab001.

29. Lafoz E., Ruart M., Anton A. et al. The Endothelium as a driver of liver fibrosis and regeneration. Cells. 2020;9(4):929. DOI: 10.3390/cells9040929.

30. Li K.N., Tumbar T. Hair follicle stem cells as a skin‐organizing signaling center during adult homeostasis. EMBO J. 2021;40(11):e107135. DOI: 10.15252/embj.2020107135.

31. Duckworth C.A. Identifying key regulators of the intestinal stem cell niche. Biochem. Soc. Trans. 2021;49(5):2163–2176. DOI: 10.1042/BST20210223.

32. Sousa-Victor P., García-Prat L., Muñoz-Cánoves P. Control of satellite cell function in muscle regeneration and its disruption in ageing. Nat. Rev. Mol. Cell Biol. 2022;23(3):204–226. DOI: 10.1038/s41580-021-00421-2.

33. Ge J.Y., Zheng Y.W., Tsuchida T. et al. Hepatic stellate cells contribute to liver regeneration through galectins in hepatic stem cell niche. Stem Cell Res. Ther. 2020;11(1):425. DOI: 10.1186/s13287-020-01942-x.

34. Afelik S., Rovira M. Pancreatic β-cell regeneration: Facultative or dedicated progenitors? Mol. Cell. Endocrinol. 2017; 445:8594. DOI: 10.1016/j.mce.2016.11.008.

35. Li W., Li L., Hui L. Cell plasticity in liver regeneration. Trends Cell Biol. 2020;30(4):329–338. DOI: 10.1016/j.tcb.2020.01.007.

36. Michalopoulos G.K., Bhushan B. Liver regeneration: biological and pathological mechanisms and implications. Nat. Rev. Gastroenterol. Hepatol. 2021;18(1):40–55. DOI: 10.1038/s41575-020-0342-4.

37. Overi D., Carpino G., Franchitto A. et al. Hepatocyte injury and hepatic stem cell niche in the progression of non-alcoholicsteatohepatitis. Cells. 2020;9(3):590. DOI: 10.3390/cells9030590.

38. Lanzoni G., Cardinale V., Carpino G. The hepatic, biliary, and pancreatic network of stem/progenitor cell niches in humans: A new reference frame for disease and regeneration. Hepatology. 2016;64(1):277–286. DOI: 10.1002/hep.28326.

39. Miyajima A., Tanaka M., Itoh T. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Stem Cell. 2014;14(5):561–574. DOI: 10.1016/j.stem.2014.04.010.

40. Itoh T., Miyajima A. Liver regeneration by stem/progenitor cells. Hepatology. 2014;59(4):1617–1626. DOI: 10.1002/hep.26753.

41. Bynigeri R.R., Jakkampudi A., Jangala R. et al. Pancreatic stellate cell: Pandora’s box for pancreatic disease biology. World J. Gastroenterol. 2017;23(3):382–405. DOI: 10.3748/wjg.v23.i3.382.

42. Kordes C., Bock H.H., Reichert D. Hepatic stellate cells: current state and open questions. Biol. Chem. 2021;402(9):1021– 1032. DOI: 10.1515/hsz-2021-0180.

43. Gaça M.D., Pickering J.A., Arthur M.J. et al. Human and rat hepatic stellate cells produce stem cell factor: a possible mechanism for mast cell recruitment in liver fibrosis. J. Hepatol. 1999;30(5):850–858. DOI: 10.1016/s0168-8278(99)80139-1.

44. Lorenzini S., Bird T.G., Boulter L. et al. Characterisation of a stereotypical cellular and extracellular adult liver progenitor cell niche in rodents and diseased human liver. Gut. 2010;59(5):645–654. DOI: 10.1136/gut.2009.182345.

45. Kamm D.R., McCommis K.S. Hepatic stellate cells in physiology and pathology. J. Physiol. 2022;600(8):1825–1837. DOI: 10.1113/JP281061.

46. Hayes A.J., Tudor D., Nowell M.A. et al. Chondroitin sulfate sulfation motifs as putative biomarkers for isolation of articular cartilage progenitor cells. J. Histochem. Cytochem. 2008;56(2):125–138. DOI: 10.1369/jhc.7A7320.2007.

47. Wang Y., Cui C.-B., Yamauchi M. et al. Lineage restriction of human hepatic stem cells to mature fates is made efficient by tissue-specific biomatrix scaffolds. Hepatology. 2011;53(1):293–305. DOI: 10.1002/hep.24012.

48. Harrill J.A., Parks B.B., Wauthier E.et al. Lineage-dependent effects of aryl hydrocarbon receptor agonists contribute to liver tumorigenesis. Hepatology. 2015;61(2):548–560. DOI: 10.1002/hep.27547.

49. Lee Y.A., Wallace M.C., Friedman S.L. Pathobiology of liver fibrosis: a translational success story. Gut. 2015;64(5):830– 841. DOI: 10.1136/gutjnl-2014-306842.

50. Schönberger K., Tchorz J.S. Hepatic stellate cells: From bad reputation to mediators of liver homeostasis. Sci. Signal. 2023;16(787):eadh5460. DOI: 10.1126/scisignal.adh5460.

51. Blaner W.S., O’Byrne S.M., Wongsiriroj N. et al. Hepatic stellate cell lipid droplets: a specialized lipid droplet for retinoid storage. Biochim. Biophys. Acta. 2009;1791(6):467–473. DOI: 10.1016/j.bbalip.2008.11.001.

52. Gupta G., Khadem F., Uzonna J.E. Role of hepatic stellate cell (HSC)-derived cytokines in hepatic inflammation and immunity. Cytokine. 2019;124:154542–154542. DOI: 10.1016/j.cyto.2018.09.004.

53. Melton A.C., Yee H.F. Hepatic stellate cell protrusions couple platelet-derived growth factor-BB to chemotaxis. Hepatology. 2007;45(6):1446–1453. DOI: 10.1002/hep.21606.

54. Ефремова Н.А., Грешнякова В.А., Горячева Л.Г. Современные представления о патогенетических механизмах фиброза печени. Журнал инфектологии. 2023;15(1):16– 24. DOI: /10.22625/2072-6732-2023-15-1-16-24.

55. Tsuchida T., Friedman S.L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 2017;14(7):397– 411. DOI: 10.1038/nrgastro.2017.38.

56. Krizhanovsky V., Yon M., Dickins R.A. et al. Senescence of activated stellate cells limits liver fibrosis. Cell. 2008;134(4):657–667. DOI: 10.1016/j.cell.2008.06.049.

57. Kent G., Gay S., Inouye T., et al. Vitamin A-containing lipocytes and formation of type III collagen in liver injury. Proc. Natl. Acad. Sci. USA. 1976;73(10):3719–3722. DOI: 10.1073/pnas.73.10.3719.

58. Roskams T. Different types of liver progenitor cells and their niches. J. Hepatol. 2006;45(1):1–4. DOI: 10.1016/j.jhep.2006.05.002.

59. Chen L., Zhang W., Zhou Q. et al. HSCs play a distinct role in differentphases of oval cell-mediated liver regeneration. Cell. Biochem. Funct. 2012;30(7):588–596. DOI: 10.1002/cbf.2838.

60. Kitto L.J., Henderson N.C. Hepatic stellate cell regulation of liver regeneration and repair. Hepatol. Commun. 2021;5(3):358–370. DOI: 10.1002/hep4.1628.

61. Скурихин Е.Г., Жукова М.А., Пан Э.С., Ермакова Н.Н., Першина О.В., Пахомова А.В. и др. Возрастные особенности реакции печени и стволовых клеток при моделировании цирроза печени. Клеточные технологии в биологии и медицине. 2021;1:24–30.

62. Cha J.J., Mandal C., Ghee J.Y. et al. Inhibition of renal stellate cell activation reduces renal fibrosis. Biomedicines. 2020;8(10):431. DOI: 10.3390/biomedicines8100431.

63. Choi J., Son Y., Moon J.W., Park D.W., Kim Y.S., Oh J. Fusion protein of RBP and albumin domain III reduces lung fibrosis by inactivating lung stellate cells. Biomedicines. 2023;11(7):2007. DOI: 10.3390/biomedicines11072007.

64. Pintilie D.G., Shupe T.D., Oh S.H. et al. Hepatic stellate cells’ involvement in progenitor-mediated liver regeneration. Lab. Invest. 2010;90(8):1199–1208. DOI: 10.1038/labinvest.2010.88.


Review

For citations:


Zhdanov V.V., Chaikovskii A.V., Pan E.S. Hepatic stellate cells and their role in the formation of the progenitor cell niche. Bulletin of Siberian Medicine. 2024;23(1):126-133. https://doi.org/10.20538/1682-0363-2024-1-126-133

Views: 438


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)