Monogenic diseases associated with cardiomyopathy genes and their phenotypic manifestations
https://doi.org/10.20538/1682-0363-2024-1-156-165
Abstract
The aim of the present study was to summarize the data on the spectrum of genetic diseases and their phenotypic manifestations in case of structural and functional defects in 75 genes, pathogenic variants of which are associated with the formation of different types of cardiomyopathy (CMP). The search for scientific publications was carried out in foreign (PubMed) and Russian (eLibrary) digital libraries. The data analysis was performed using the Simple ClinVar, An Online Catalog of Human Genes and Genetic Disorders, and STRING databases.
It was shown that the vast majority of CMP genes are pleiotropic. Monogenic diseases caused by mutations in CMP genes are characterized by a wide range of pathological manifestations in various organs and systems (cardiovascular, nervous, endocrine, musculoskeletal systems, connective tissue, skin and appendages, organs of vision and hearing, kidneys) as well as by metabolic and immune disorders. Therefore, if a patient (regardless of the primary diagnosis) has pathogenic / likely pathogenic variants or variants of uncertain significance in the CMP genes, we recommend a detailed and comprehensive clinical examination. This is important for clarifying the effects of rare genetic variants, identifying significant clinical and prognostic features for CMP and monogenic diseases associated with CMP genes, and identifying risk groups and controllable triggers that contribute to the manifestation of pathogenic genetic variants.
About the Authors
A. N. KucherRussian Federation
10, Naberezhnaya Ushayki Str., Tomsk, 634050
M. S. Nazarenko
Russian Federation
10, Naberezhnaya Ushayki Str., Tomsk, 634050
References
1. Nussinov R., Tsai C.J., Jang H. Protein ensembles link genotype to phenotype. PLoS Comput. Biol. 2019;15(6):e1006648. DOI: 10.1371/journal.pcbi.1006648.
2. Leoni C., Blandino R., Delogu A.B., De Rosa G., Onesimo R., Verusio V. et al. Genotype-cardiac phenotype correlations in a large single-center cohort of patients affected by RASopathies: Clinical implications and literature review. Am. J. Med. Genet. A. 2022;188(2):431–445. DOI: 10.1002/ajmg.a.62529.
3. Lodato V., Parlapiano G., Calì F., Silvetti M.S., Adorisio R., Armando M. et al. Cardiomyopathies in children and systemic disorders when is it useful to jook beyond the heart? J. Cardiovasc. Dev. Dis. 2022;9(2):47. DOI: 10.3390/jcdd9020047.
4. Cerrone M., Remme C.A., Tadros R., Bezzina C.R., Delmar M. Beyond the one gene-one disease paradigm: complex genetics and pleiotropy in inheritable cardiac disorders. Circulation. 2019;140(7):595–610. DOI: 10.1161/CIRCULATIONAHA.118.035954.
5. Hershberger R.E., Cowan J., Jordan E., Kinnamon D.D. The complex and diverse genetic architecture of dilated cardiomyopathy. Circ Res. 2021;128(10):1514–1532. DOI: 10.1161/CIRCRESAHA.121.318157.
6. McKenna W.J., Judge D.P. Epidemiology of the inherited cardiomyopathies. Nat. Rev. Cardiol. 2021;18(1):22–36. DOI: 10.1038/s41569-020-0428-2.
7. Brieler J., Breeden M.A., Tucker J. Cardiomyopathy: an overview. Am. Fam. Physician. 2017;96(10):640–646.
8. El Hadi H., Freund A., Desch S., Thiele H., Majunke N. Hypertrophic, dilated, and arrhythmogenic cardiomyopathy: Where are we? Biomedicines. 2023;11(2):524. DOI: 10.3390/biomedicines11020524.
9. Povysil G., Chazara O., Carss K.J., Deevi S.V.V., Wang Q., Armisen J. et al. Assessing the role of rare genetic variation in patients with heart failure. JAMA Cardiol. 2021;6(4):379–386. DOI: 10.1001/jamacardio.2020.6500.
10. Koziol K.J., Aronow W.S. Peripartum cardiomyopathy: current understanding of pathophysiology, diagnostic workup, management, and outcomes. Curr. Probl. Cardiol. 2023;48(8):101716. DOI: 10.1016/j.cpcardiol.2023.101716.
11. Paul C., Peters S., Perrin M., Fatkin D., Amerena J. Non-ischaemic dilated cardiomyopathy: recognising the genetic links. Intern. Med. J. 2023;53(2):178–185. DOI: 10.1111/imj.15921.
12. Комиссарова С.М., Ринейская Н.М., Чакова Н.Н., Ниязова С.С. Смешанный фенотип: некомпактный миокард левого желудочка и гипертрофическая кардиомиопатия. Кардиология. 2020;60(4):137–145. DOI: 10.18087/cardio.2020.4.n728.
13. Ding W.W., Wang B.Z., Han L., Li Z.P., Zhang W., Wang H. et al. ALPK3 gene-related pediatric cardiomyopathy with craniofacial-skeletal features: a report and literature review. Zhonghua Er Ke Za Zhi – Chinese Journal of Pediatrics. 2021;59(9):787–792. [Chinese]. DOI: 10.3760/cma.j.cn112140-20210222-00150.
14. Gonçalves L., Pires I., Santos J., Correia J., Neto V., Moreira D. et al. One genotype, two phenotype: Hypertrophic cardiomyopathy with left ventricular non-compaction. Cardiol. J. 2022;29(2):366–367. DOI: 10.5603/Cj.2022.0020.
15. Joury A., Faaborg-Andersen C., Quintana R.A., da Silva-deAbreu A., Nativi-Nicolau J. Diagnostic tools for cardiac amyloidosis: a pragmatic comparison of pathology, imaging and laboratories. Curr. Probl. Cardiol. 2023;48(5):101106. DOI: 10.1016/j.cpcardiol.2022.101106.
16. Simple ClinVar. URL: https://simple-clinvar.broadinstitute.org/
17. Noronha R.M., Villares S.M.F., Torres N., Quedas E.P.S., Homma T.K., Albuquerque E.V.A. et al. Noonan syndrome patients beyond the obvious phenotype: A potential unfavorable metabolic profile. Am. J. Med. Genet. A. 2021;185(3):774– 780. DOI: 10.1002/ajmg.a.62039.
18. Римская Е.М., Новиков П.С., Салами Х.Ф., Голицын С.П. Синдром Бругада и синдром ранней реполяризации: различные клинические формы синдрома J-волны на примере одной семьи. Кардиологический вестник. 2022;17(2):81– 87. DOI: 10.17116/Cardiobulletin20221702181.
19. Yu C., Deng X.J., Xu D. Gene mutations in comorbidity of epilepsy and arrhythmia. J. Neurol. 2023;270(3):1229–1248. DOI: 10.1007/s00415-022-11430-2.
20. Tissue expression database. URL: https://tissues.jensenlab.org/
21. STRING. URL: https://string-db.org/
22. Online Mendelian Inheritance in Man. URL: https://omim.org/
23. Yoneda Z.T., Anderson K.C., Quintana J.A., O’Neill M.J., Sims R.A., Glazer A.M. et al. Early-onset atrial fibrillation and the prevalence of rare variants in cardiomyopathy and arrhythmia genes. JAMA Cardiol. 2021;6(12):1371–1379. DOI: 10.1001/jamacardio.2021.3370.
24. Cipriani A., Perazzolo Marra M., Bariani R., Mattesi G., Vio R., Bettella N. et al. Differential diagnosis of arrhythmogenic cardiomyopathy: phenocopies versus disease variants. Minerva Med. 2021;112(2):269–280. DOI: 10.23736/S0026-4806.20.06782-8.
25. Salakhov R.R., Golubenko M.V., Valiakhmetov N.R., Pavlyukova E.N., Zarubin A.A., Babushkina N.P. et al. Application of long-read nanopore sequencing to the search for mutations in hypertrophic cardiomyopathy. Int. J. Mol. Sci. 2022;23(24):15845. DOI: 10.3390/ijms232415845.
26. Biswas A., Nath S.D., Ahsan T., Hossain M.M., Akhteruzzaman S., Sajib A.A. TTN as a candidate gene for distal arthrogryposis type 10 pathogenesis. J. Genet. Eng. Biotechnol. 2022;20(1):119. DOI: 10.1186/s43141-022-00405-5.
27. GWAS Catalog. The NHGRI-EBI Catalog of human genome-wide association studies. URL: https://www.ebi.ac.uk/gwas/
28. Кучер А.Н., Валиахметов Н.Р., Салахов Р.Р., Голубенко М.В., Павлюкова Е.Н., Назаренко М.С. Фенотипическая вариабельность гипертрофической кардиомиопатии у носителей патогенного варианта p.Arg870His гена MYH7. Бюллетень сибирской медицины. 2022;21(3):205– 216. DOI: 10.20538/1682-0363-2022-3-205-216. DOI: 10.20538/1682-0363-2022-3-205-216.
29. Кучер А.Н., Слепцов А.А., Назаренко М.С. Генетический ландшафт дилатационной кардиомиопатии. Генетика. 2022;58(4):371–387. DOI: 10.31857/S0016675822030080.
Review
For citations:
Kucher A.N., Nazarenko M.S. Monogenic diseases associated with cardiomyopathy genes and their phenotypic manifestations. Bulletin of Siberian Medicine. 2024;23(1):156-165. https://doi.org/10.20538/1682-0363-2024-1-156-165