The state and vascularization of the bone marrow transplanted in the diffusion chamber to the rat neurovascular bundle
https://doi.org/10.20538/1682-0363-2024-2-37-45
Abstract
Background. The diffusion chamber method helps solve the problem of delivering a biomaterial with minimal losses, while creating an isolated environment in the recipient’s body. The issue of vascularization of diffusion chambers to preserve the functional capacity of the biomaterial remains relevant. A bioengineered diffusion chamber model, together with the vascular adventitia, promotes vascularization of the biomaterial placed in the chamber.
The aim of the study was to assess the state of the bone marrow placed in the diffusion chamber and transplanted to the femoral neurovascular bundle of a rat.
Materials and methods. The experimental part of the study was carried out on mature male Wistar rats. The animals were divided into two groups. Group 1 was experimental (n = 4), in which a polycaprolactone diffusion chamber filled with bone marrow was implanted in the femoral neurovascular bundle. Group 2 was control (n = 3), in which the diffusion chamber without bone marrow was implanted in a similar bundle.
Results. The histologic examination of the structure of the compact capsule in the bioengineered model in the experimental group revealed areas of woven bone tissue in 25% of the rats. An increase in the vascularization coefficient by 96% and a rise in the Kernohan index by 7% in the experimental group compared to the control group indicated that sufficient conditions were formed to develop the microvasculature while maintaining the bone marrow differentiation path.
Conclusion. The reliability of these results is confirmed by immunohistochemical markers of vascularization VEGF and CD34.
Keywords
About the Authors
M. V. DvornichenkoRussian Federation
2, Moscow Trakt, Tomsk, 634050
Competing Interests:
The authors declare the absence of obvious or potential conflict of interest related to the publication of this article
E. A. Marzol
Russian Federation
2, Moscow Trakt, Tomsk, 634050
Competing Interests:
The authors declare the absence of obvious or potential conflict of interest related to the publication of this article
E. А. Zinovyev
Russian Federation
2, Moscow Trakt, Tomsk, 634050
Competing Interests:
The authors declare the absence of obvious or potential conflict of interest related to the publication of this article
N. S. Mitryaikin
Russian Federation
2, Moscow Trakt, Tomsk, 634050
Competing Interests:
The authors declare the absence of obvious or potential conflict of interest related to the publication of this article
I. A. Khlusov
Russian Federation
2, Moscow Trakt, Tomsk, 634050
Competing Interests:
The authors declare the absence of obvious or potential conflict of interest related to the publication of this article
References
1. Zhang P., Zhang C., Li J., Han J., Liu X., Yang H. The physical microenvironment of hematopoietic stem cells and its emerging roles in engineering applications. Stem Cell Res. Ther. 2019;10(1):327. DOI: 10.1186/s13287-019-1422-7.
2. Mahadik B.P., Pedron Haba S., Skertich L.J., Harley B.A. The use of covalently immobilized stem cell factor to selectively affect hematopoietic stem cell activity within a gelatin hydrogel. Biomaterials. 2015;67:297–307. DOI: 10.1016/j.biomaterials.2015.07.042.
3. Sharma M.B., Limaye L.S., Kale V.P. Mimicking the functional hematopoietic stem cell niche in vitro: recapitulation of marrow physiology by hydrogel-based three-dimensional cultures of mesenchymal stromal cells. Haematologica. 2012;97(5):651–660. DOI: 10.3324/haematol.2011.050500.
4. Batsivari A., Haltalli M.L.R., Passaro D., Pospori C., Lo Celso C., Bonnet D. Dynamic responses of the haematopoietic stem cell niche to diverse stresses. Nat. Cell Biol. 2020;22(1):7–17. DOI: 10.1038/s41556-019-0444-9.
5. Cosson S., Lutolf M.P. microfluidic patterning of protein gradients on biomimetic hydrogel substrates. Methods in Cell Biology. 2014:121:91–102. DOI: 10.1016/B978-0-12-800281-0.00007-5.
6. Itkin T., Gur-Cohen S., Spencer J.A., Schajnovitz A., Ramasamy S.K., Kusumbe A.P. et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature. 2016;532(7599):323–328. DOI: 10.1038/nature17624.
7. Jeon J.S. et al. Generation of 3D functional microvascular networks with mural cell-like human mesenchymal stem cells in microfluidic systems by vasculogenesis-like process. Integr. Biol. (Camb.). 2014;6(5):555–563. DOI: 10.1039/c3ib40267c.
8. Mulligan-Kehoe M.J. The vasa vasorum in diseased and nondiseased arteries. Am. J. Physiol. Heart Circ. Physiol. 2010;298(2):H295–305. DOI: 10.1152/ajpheart.00884.
9. Zhou X., Pan Y., Liu R. et al. Biocompatibility and biodegradation properties of polycaprolactone/polydioxanone composite scaffolds prepared by blend or co-electrospinning. Journal of Bioactive and Compatible Polymers. 2019;34(2):115–130. DOI: 10.1177/0883911519835569.
10. ГОСТ ISO 11135-2017 Стерилизация медицинской продукции. Этиленоксид. Требования к разработке, валидации и текущему управлению процессом стерилизации медицинских изделий.
11. Kokozidou M., Katsargyris A., Verhoeven Eric L.G., SchulzeTanzil G. Vascular access animal models used in research. Ann. Anatomy. 2019:225:65–75. DOI: 10.1016/j.aanat.2019.06.002.
12. Богданов Л.А., Кутихин А.Г. Оптимизация окрашивания элементов системы кровообращения и гепатолиенальной системы гематоксилином и эозином. Фундаментальная и клиническая медицина. 2019;4(4):70–77. DOI: 10.23946/2500-0764-2019-4-4-70-77.
13. Коняева А.Д., Варакута Е.Ю., Лейман А.Е., Рафиев Д.О., Больбасов Е.Н., Станкевич К.С. Морфологические особенности регенерации слизистой оболочки полости рта при применении полимерных пьезоэлектрических мембран. Вестник РГМУ. 2023;(3):61–68. DOI: 10.24075/vrgmu.2023.020.
14. Нестерова Е.С., Кравченко С.К., Гемджян Э.Г., Османов Е.А., Ковригина А.М. Оценка васкуляризации и микроокружения опухолевой ткани при фолликулярной лимфоме. Терапевтический архив. 2013;85(7):57–64.
15. Никель В.В., Самотесов П.А., Ефремова В.П., Батухтина Н.П., Вахтина Л.Ю., Беззаботнов В.Е. Морфофункциональное состояние артериальных сосудов полых паренхиматозных органов. Journal of Siberian Medical Sciences. 2015;(3):76.
16. Казанцева Е.А. Конструирование и оценка эффективности систем контролируемой доставки сельскохозяйственных препаратов различного действия: магистерская диссертация. М., 2018.
17. Степанов И.В., Алтыбаев С.Р., Крахмаль Н.В., Рачковский К.В., Сорокин Д.А., Афанасьев С.Г. и др. Связь параметров опухолевого неоангиогенеза с лимфогенным метастазированием при раке прямой кишки. Сибирский онкологический журнал. 2017;16(3):46–51. DOI: 10.21294/1814-4861-2017-16-3-46-51.
18. Vasuri F., Fittipaldi S., Giunchi F., Monica M., Ravaioli M., Degiovanni A. Facing the enigma of the vascular network in hepatocellular carcinomas in cirrhotic and non-cirrhotic livers. J. Clin. Pathol. 2016;69(2):102–108. DOI: 10.1136/jclinpath-2015-203028.
19. Park S., Kim J.-Y., Jang G.-B., Choi J.-H., Kim J.-H., Lee C.-L. Aberrant activation of the CD45-Wnt signaling axis promotes stemness and therapy resistance in colorectal cancer cells. Theranostics. 2021;11(18):8755–8770. DOI: 10.7150/thno.63446.
20. Юрова К.А., Хазиахматова О.Г., Малащенко В.В., Норкин И.К., Иванов П.А., Хлусов И.А. и др. Клеточно-молекулярные аспекты воспаления, ангиогенеза и остеогенеза. Краткий обзор. Цитология. 2020;62(5):305–315. DOI: 10.31857/S0041377120050090.
21. Woodruff M.A., Hutmacher D.W. The return of a forgotten polymer – polycaprolactone in the 21st century. Prog. Polym. Sci. 2010;35(10):1217–1256. DOI: 10.1016/j.progpolymsci.2010.04.002.
22. Murr L.E. Strategies for creating living, additively manufactured, open-cellular metal and alloy implants by promoting osseointegration, osteoinduction and vascularization: An overview. J. Mater. Sci. Technol. 2019;35(2):231–241. DOI: 10.1016/j.jmst.2018.09.003.
23. Dang J., Yang J., Yu Z., Chen L., Zang Z., Wang K. et al. Bone marrow mesenchymal stem cells enhance angiogenesis and promote fat retention in fat grafting via polarized macrophages. Stem Cell Res. Ther. 2022;13(1):52. DOI: 10.1186/s13287-022-02709-2.
24. Khlusov I., Litvinova L., Shupletsova V., Khaziakhmatova O., Malashchenko V., Yurova K. et al. Costimulatory effect of rough calcium phosphate coating and blood mononuclear cells on adipose-derived mesenchymal stem cells in vitro as a model of in vivo tissue repair. Materials. 2020;13(19):4398. DOI: 10.3390/ma13194398.
Review
For citations:
Dvornichenko M.V., Marzol E.A., Zinovyev E.А., Mitryaikin N.S., Khlusov I.A. The state and vascularization of the bone marrow transplanted in the diffusion chamber to the rat neurovascular bundle. Bulletin of Siberian Medicine. 2024;23(2):37-45. https://doi.org/10.20538/1682-0363-2024-2-37-45