Preview

Bulletin of Siberian Medicine

Advanced search

Molecular targets for metastasis-directed therapy in malignant tumors

https://doi.org/10.20538/1682-0363-2024-2-101-113

Abstract

Over the past two decades, targeted therapy has actively developed and, demonstrating impressive clinical results, has gained an increasingly important role in the treatment of cancer. This was facilitated to a large extent by an in-depth understanding of the mechanisms of cancer development, and mainly, the discovery of molecular targets. Despite the fact that targeted therapy can radically change the results of treatment and the prognosis of the disease course in some cancer cases, its effectiveness is sometimes replaced by drug resistance, in others.
The authors of the lecture analyzed and systematized therapeutic approaches to addressing a number of important molecular targets that are key for implementing a specific stage in human tumor pathogenesis. These include maintaining chronic proliferative signaling, promoting evasion of cell growth suppressors, inducing angiogenesis, forming immune surveillance, and activating invasion and metastasis. The lecture presented targeted therapy drugs used in the Russian Federation, including antibody-based drugs and small molecule tyrosine kinase inhibitors. It also analyzed mechanisms of molecular interaction between these drugs and their targets, as well as possible factors for developing resistance and ways to overcome these resistance mechanisms.

About the Authors

V. V. Bodenko
Siberian State Medical University; National Research Tomsk Polytechnic University
Russian Federation

2, Moscow Trakt, Tomsk, 634050;
30, Lenina Av., Tomsk, 634050


Competing Interests:

The authors declare the absence of obvious and potential conflict of interest related to the publication of this article.



M. S. Larkina
Siberian State Medical University
Russian Federation

2, Moscow Trakt, Tomsk, 634050


Competing Interests:

The authors declare the absence of obvious and potential conflict of interest related to the publication of this article.



A. A. Prach
National Research Tomsk Polytechnic University
Russian Federation

30, Lenina Av., Tomsk, 634050


Competing Interests:

The authors declare the absence of obvious and potential conflict of interest related to the publication of this article.



E. V. Plotnikov
National Research Tomsk Polytechnic University
Russian Federation

30, Lenina Av., Tomsk, 634050


Competing Interests:

The authors declare the absence of obvious and potential conflict of interest related to the publication of this article.



M. V. Belousov
Siberian State Medical University
Russian Federation

2, Moscow Trakt, Tomsk, 634050


Competing Interests:

The authors declare the absence of obvious and potential conflict of interest related to the publication of this article.



V. I. Chernov
Cancer Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
Russian Federation

5, Kooperativny Str., Tomsk, 634009


Competing Interests:

The authors declare the absence of obvious and potential conflict of interest related to the publication of this article.



References

1. O’Neill A.C., Alessandrino F., Tirumani S.H., Ramaiya N.H. Hallmarks of cancer in the reading room: a guide for radiologists. American Journal of Roentgenology. 2018;211(3):470–484. DOI: 10.2214/AJR.17.19425.

2. Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674. DOI: 10.1016/j.cell.2011.02.013.

3. Zhang J., Yang P.L., Gray N.S. Targeting cancer with small molecule kinase inhibitors. Nature Reviews Cancer. 2009;9(1):28–39. DOI: 10.1038/nrc2559.

4. Roskoski R.Jr. Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacological Research. 2016;103:26–48. DOI: 10.1016/j.phrs.2015.10.021.

5. Waarts M.R., Stonestrom A.J., Park Y.C., Levine R.L. Targeting mutations in cancer. The Journal of Clinical Investigation. 2022;132(8):e154943. DOI: 10.1172/JCI154943.

6. Weiner L.M., Surana R., Wang S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nature Reviews. Immunology. 2010;10(5):317–327. DOI: 10.1038/nri2744.

7. Rinne S.S., Orlova A., Tolmachev V. PET and SPECT Imaging of the EGFR Family (RTK Class I) in Oncology. International Journal of Molecular Sciences. 2021;22(7):3663. DOI: 10.3390/ijms22073663.

8. Appert-Collin A., Hubert P., Crémel G., Bennasroune A. Role of ErbB receptors in cancer cell migration and invasion. Frontiers in Pharmacology. 2015;6:283. DOI: 10.3389/fphar.2015.00283.

9. Khoury R., Saleh K., Khalife N., Saleh M., Chahine C., Ibrahim R. et al. Mechanisms of Resistance to Antibody-Drug Conjugates. International Journal of Molecular Sciences. 2023;24(11):9674. DOI: 10.3390/ijms24119674.

10. Diamantis N., Banerji U. Antibody-drug conjugates – an emerging class of cancer treatment. British Journal of Сancer. 2016;114(4):362–367. DOI: 10.1038/bjc.2015.435.

11. Chen Y.F., Xu Y.Y., Shao Z.M., Yu K.D. Resistance to antibody-drug conjugates in breast cancer: mechanisms and solutions. Cancer Сommunications. 2023;43(3):297–337. DOI: 10.1002/cac2.12387.

12. Indini A., Rijavec E., Grossi F. Trastuzumab Deruxtecan: Changing the destiny of HER2 expressing solid tumors. International Journal of Molecular Sciences. 2021;22(9):4774. DOI: 10.3390/ijms22094774.

13. Ma P., Tian H., Shi Q., Liu R., Zhang Y., Qi X., Chen Y. High risks adverse events associated with trastuzumab emtansine and trastuzumab deruxtecan for the treatment of HER2-positive/mutated malignancies: a pharmacovigilance study based on the FAERS database. Expert Opinion on Drug Safety 2023;22(8):685–696. DOI: 10.1080/14740338.2023.2204228.

14. Braun T.P., Eide C.A., Druker B.J. Response and resistance to BCR-ABL1-targeted therapies. Cancer Cell. 2020;37(4):530–542. DOI: 10.1016/j.ccell.2020.03.006

15. Pane F., Frigeri F., Sindona M., Luciano L., Ferrara F., Cimino R. et al. Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction). Blood. 1996;88(7)2410–2414. DOI: 10.1182/blood.V88.7.2410.bloodjournal8872410.

16. Adnan-Awad S., Kim D., Hohtari H., Javarappa K.K., Brandstoetter T., Mayer I. et al. Characterization of p190-Bcr-Abl chronic myeloid leukemia reveals specific signaling pathways and therapeutic targets. Leukemia. 2021;35(7):1964–1975. DOI: 10.1038/s41375-020-01082-4.

17. Moorman A.V., Chilton L., Wilkinson J., Ensor H.M., Bown N., Proctor S.J. A population-based cytogenetic study of adults with acute lymphoblastic leukemia. Blood. 2010;115(2):206–214. DOI: 10.1182/blood-2009-07-232124.

18. Chissoe S.L., Bodenteich A., Wang Y.-F., Buriaton S.W., Cran D., Clifbtree J. et al. Sequence and analysis of the human ABL gene, the BCR gene, and regions involved in the Philadelphia chromosomal translocation. Genomics. 1995;27(1):67–82. DOI: 10.1006/geno.1995.1008.

19. Braun T.P., Eide C.A., Druker B.J. Response and resistance to BCR-ABL1-targeted therapies. Cancer Cell. 2020;37(4):530–542. DOI: 10.1016/j.ccell.2020.03.006.

20. Sattler M., Griffin J.D. Molecular mechanisms of transformation by the BCR-ABL oncogene. Seminars in Hematology. 2003;40:4–10. DOI: 10.1053/shem.2003.50034.

21. García-Gutiérrez V., Breccia M., Jabbour E., Mauro M., Cortes J.E. A clinician perspective on the treatment of chronic myeloid leukemia in the chronic phase. Journal of Hematology & Oncology. 2022;15(1):90. DOI: 10.1186/s13045-022-01309-0.

22. Iacob R.E., Pene-Dumitrescu T., Zhang J., Gray N.S., Smithgall T.E., Engen J.R. Conformational disturbance in Abl kinase upon mutation and deregulation. Proceedings of the National Academy of Sciences. 2009;106(5):1386–1391. DOI: 10.1073/pnas.0811912106.

23. Tokarski J.S., Newitt J.A., Chang C.Y., Cheng J.D., Wittekind M., Kiefer S.E. et al. The structure of Dasatinib (BMS354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Research. 2006;66:5790–5797. DOI: 10.1158/0008-5472.CAN-05-4187.

24. Туркина А.Г., Кузьмина Е.А. Результаты применения асциминиба, первого аллостерического ингибитора BCR::ABL1-тирозинкиназы, у больных хроническим миелолейкозом со множественной резистентностью к предшествующей терапии. Клиническая онкогематология. Фундаментальные исследования и клиническая практика. 2023;16(3):311–320.

25. Куцев С.И., Вельченко М.В. Значение анализа мутаций гена Bcr-Abl в оптимизации таргетной терапии хронического миелолейкоза. Клиническая онкогематология. Фундаментальные исследования и клиническая практика. 2008;1(3):190–199.

26. O’Hare T., Shakespeare W.C., Zhu X., Eide C., Rivera V., Wang F. et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell. 2009;16(5):401–412. DOI: 10.1016/j.ccr.2009.09.028.

27. O’Leary B., Finn R.S., Turner N.C. Treating cancer with selective CDK4/6 inhibitors. Nature Reviews Clinical Оncology. 2016;13(7):417–430. DOI: 10.1038/nrclinonc.2016.26.

28. Braal C.L., Jongbloed E.M., Wilting S.M., Mathijssen R.H.J., Koolen S.L.W., Jager A. Inhibiting CDK4/6 in breast cancer with palbociclib, ribociclib, and abemaciclib: similarities and differences. Drugs. 2021;81(3):317–331. DOI: 10.1007/s40265-020-01461-2.

29. Hanahan D., Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86(3):353–364. DOI: 10.1016/s0092-8674(00)80108-7.

30. La Mendola D., Trincavelli M.L., Martini C. Angiogenesis in disease. International Journal of Molecular Sciences. 2022;23(18):10962. DOI: 10.3390/ijms231810962.

31. Tirumani S.H., Fairchild A., Krajewski K.M., Nishino M., Howard S.A., Baheti A.D. et al. Anti-VEGF molecular targeted therapies in common solid malignancies: comprehensive update for radiologists. Radio Graphics. 2015;35(2):455–474. DOI: 10.1148/rg.352140119.

32. Cheng N., Chytil A., Shyr Y., Joly A., Moses H.L. Transforming growth factor-beta signaling-deficient fibroblasts enhance hepatocyte growth factor signaling in mammary carcinoma cells to promote scattering and invasion. Molecular Cancer Research. 2008;6(10):1521–1533. DOI: 10.1158/1541-7786. MCR-07-2203.

33. Buchbinder E.I., Desai A. CTLA-4 and PD-1 Pathways: similarities, differences, and implications of their inhibition. American Journal of Clinical Ooncology. 2016;39(1):98–106. DOI: 10.1097/COC.0000000000000239.

34. Nikoo M., Rabiee F., Mohebbi H., Eghbalifard N., Rajabi H., Yazdani Y. et al. Nivolumab plus ipilimumab combination therapy in cancer: Current evidence to date. International Immunopharmacology. 2023;117:109881. DOI: 10.1016/j.intimp.2023.109881.

35. Dhillon S. Capmatinib: first approval. Drugs. 2020;80(11):1125–1131. DOI: 10.1007/s40265-020-01347-3.

36. Drilon A., Cappuzzo F., Ou S.I., Camidge D.R. Targeting MET in lung cancer: Will expectations finally be MET? Journal of Thoracic Oncology. 2017;12(1):15–26. DOI: 10.1016/j.jtho.2016.10.014.


Review

For citations:


Bodenko V.V., Larkina M.S., Prach A.A., Plotnikov E.V., Belousov M.V., Chernov V.I. Molecular targets for metastasis-directed therapy in malignant tumors. Bulletin of Siberian Medicine. 2024;23(2):101-113. https://doi.org/10.20538/1682-0363-2024-2-101-113

Views: 470


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)