Preview

Bulletin of Siberian Medicine

Advanced search

Pyroptosis and its therapeutic potential

https://doi.org/10.20538/1682-0363-2024-2-142-150

Abstract

The review examines present data on pyroptosis – a type of programmed cell death associated with infection with various pathogens. During pyroptosis. specific molecular complexes, inflammasomes, are formed, caspases are activated, and proinflammatory cytokines are produced.
We consider the mechanisms of pyroptosis activation, including canonical and non-canonical pathways, as well as methods for its detection in cells. The review substantiates the relevance of studying the role of pyroptosis in pathological processes in different tissues. We focus on the therapeutic potential of pyroptosis, including its role in the treatment of sepsis. Pyroptosis is involved in sepsis-induced tissue damage in various organs, so regulation of this type of cell death can serve as the basis for the development of innovative treatment methods. 

About the Authors

I. A. Odintsova
S.M. Kirov Military Medical Academy
Russian Federation

6g, Akademika Lebedeva Str., Saint Petersburg, 194044


Competing Interests:

The authors declare the absence of obvious or potential conflict of interest related to the publication of this article.



V. S. Chirsky
S.M. Kirov Military Medical Academy
Russian Federation

6g, Akademika Lebedeva Str., Saint Petersburg, 194044


Competing Interests:

The authors declare the absence of obvious or potential conflict of interest related to the publication of this article.



D. R. Slutskaya
S.M. Kirov Military Medical Academy
Russian Federation

6g, Akademika Lebedeva Str., Saint Petersburg, 194044


Competing Interests:

The authors declare the absence of obvious or potential conflict of interest related to the publication of this article.



E. A. Andreeva
S.M. Kirov Military Medical Academy
Russian Federation

6g, Akademika Lebedeva Str., Saint Petersburg, 194044


Competing Interests:

The authors declare the absence of obvious or potential conflict of interest related to the publication of this article.



T. I. Berezovskaya
S.M. Kirov Military Medical Academy
Russian Federation

6g, Akademika Lebedeva Str., Saint Petersburg, 194044


Competing Interests:

The authors declare the absence of obvious or potential conflict of interest related to the publication of this article.



References

1. Деев Р.В., Васин И.В. Гибель клеток и тканей: учебное пособие. Рязань: РИОРязГМУ, 2018:48.

2. Долгушин И.И., Савочкина А.Ю., Курносенко И.В., Долгушина В.Ф., Савельева А.А., Самусева И.В. и др. Участие внеклеточных ДНК-ловушек в защитных и патологических реакциях организма. Российский иммунологический журнал. 2015;9(2):164–170.

3. Деев Р.В., Билялов А.И., Жампеисов Т.М. Современные представления о клеточной гибели. Гены и клетки. 2018;XIII(1):6–19.

4. Jorgensen I., Rayamajhi M., Miao E.A. Programmed cell death as a defence against infection. Nature Reviews Immunology. 2017;17(3):151–164. DOI: 10.1038/nri.2016.147.

5. Chen T., Li Y., Sun R., Hu H., Liu Y., Herrmann M. et al. Receptor-mediated NETosis on neutrophils. Front. Immunol. 2021;12:7752–7767. DOI: 10.3389/fimmu.2021.775267.

6. Одинцова И.А., Миргородская О.Е., Русакова С.Э., Горбулич А.В., Гололобов В.Г. Нейтрофильные внеклеточные ловушки: структура и биологическая роль. Гены и клетки. 2022;17(4):63–74. DOI: 10.23868/gc352562.

7. Климов В.В., Загрешенко Д.С., Уразова О.И., Климов А.В., Найдина О.А., Цыплина Е.Ю. и др. Инфламмасома как ранний патофизиологический феномен воспалительного процесса при болезнях кожи и других патологиях. Бюллетень сибирской медицины. 2023;22(2):111–121. DOI: 10.20538/1682-0363-2023-2-111-121.

8. Dong T., Liao D., Liu X., Lei X. Using small molecules to dissect non-apoptotic programmed cell death: necroptosis, ferroptosis, and pyroptosis. Chem. Bio. Chem. 2015;16(18):2557–2561. DOI: 10.1002/cbic.201500422.

9. Zhaolin Z., Guohua L., Shiyuan W., Zuo W. Role of pyroptosis in cardiovascular disease. Cell Prolif. 2019;52(2):e12563. DOI: 10.1111/cpr.12563.

10. Al Mamun A., Wu Y., Jia Ch., Munir F., Sathy K.J., Sarker T. et al. Role of pyroptosis in liver diseases. Int. Immunopharmacol. 2020;84:106489. DOI: 10.1016/j.intimp.2020.106489.

11. Гаранина Е.Е., Мартынова Е.В., Иванов К.Я., Ризванов А.А., Хайбуллина С.Ф. Инфламмасомы: роль в патогенезе заболеваний и терапевтический потенциал. Ученые записки Казанского университета. Серия Естественные науки. 2020;162(1):80–111. DOI: 10.26907/2542-064X.2020.1.80-111.

12. Nakazawa D., Kudo T. Novel therapeutic strategy based on neutrophil subset and its function in autoimmune disease. Front. Pharmacol. 2021;12:6848–6886. DOI: 10.3389/fphar.2021.684886.

13. Zychlinsky A., Prevost M.C., Sansonetti P.J. Shigella flexneri induces apoptosis in infected macrophages. Nature. 1992;358(6382):167–169. DOI: 10.1038/358167a0.

14. Monack D.M., Raupach B., Hromockyj A.E., Falkow S. Salmonella typhimurium invasion induces apoptosis in infected macrophages. Proceedings of the National Academy of Sciences. 1996;93(18):9833–9838. DOI: 10.1073/pnas.93.18.9833.

15. Loveless R., Bloomquist R., Teng Y. Pyroptosis at the forefront of anticancer immunity. J. Exp. Clin. Cancer Res. 2021;40(1):264. DOI: 10.1186/s13046-021-02065-8.

16. Hilbi H., Moss J.E., Hersh D., Chen Y., Arondel J., Banerjee S. et al. Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J. Biol. Chem. 1998;273(49):32895–32900. DOI: 10.1074/jbc.273.49.32895.

17. Man S.M., Kanneganti T.-D. Gasdermin D: the long-awaited executioner of pyroptosis. Cell Res. 2015;25(11):1183–1184. DOI: 10.1038/cr.2015.124.

18. Cookson B.T., Brennan M.A. Pro-inflammatory programmed cell death. Trends Microbiol. 2001;9(3):113–114. DOI: 10.1016/s0966-842x(00)01936-3.

19. Pan Y., Cai W., Huang J., Cheng A., Wang M., Yin Z. et al. Pyroptosis in development, inflammation and disease. Front. Immunol. 2022;13:991044. DOI: 10.3389/fimmu.2022.991044.

20. Martinon F., Burns K., Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell. 2002;10(2):417–426. DOI: 10.1016/s1097-2765(02)00599-3.

21. Fink S.L., Bergsbaken T., Cookson B.T. Anthrax lethal toxin and Salmonella elicit the common cell death pathway of caspase-1-dependent pyroptosis via distinct mechanisms. Proceedings of the National Academy of Sciences. 2008;105(11):4312–4317. DOI: 10.1073/pnas.0707370105.

22. Kayagaki N., Warming S., Lamkanfi M., Vande Walle L., Louie S., Dong J. et al. Non-canonical inflammasome activation targets caspase-11. Nature. 2011;479(7371):117–121. DOI: 10.1038/nature10558.

23. Burdette B.E., Esparza A.N., Zhu H., Wang S. Gasdermin D in pyroptosis. Acta Pharm. Sin B. 2021;11(9):2768–2782. DOI: 10.1016/j.apsb.2021.02.006.

24. Miao E.A., Leaf I.A., Treuting P.M., Mao D.P., Dors M., Sarkar A. et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nature Immunology. 2010;11(12):1136–1142. DOI: 10.1038/ni.1960.

25. Aachoui Y., Leaf I.A., Hagar J.A., Fontana M.F., Campos C.G., Zak D.E. et al. Caspase-11 protects against bacteria that escape the vacuole. Science. 2013;339(6122):975–978. DOI: 10.1126/science.1230751.

26. Feng S., Fox D., Man S.M. Mechanisms of gasdermin family members in inflammasome signaling and cell death. J. Mol. Biol. 2018;430(18):3068–3080. DOI: 10.1016/j.jmb.2018.07.002.

27. Du T., Gao J., Li P., Wang Yu., Qi Q., Liu X. et al. Pyroptosis, metabolism, and tumor immune microenvironment. Clin. Transl. Med. 2021;11(8):e492. DOI: 10.1002/ctm2.492.

28. Thornberry N.A. Interleukin-1β converting enzyme. Methods Enzymol. 1994;244:615–631. DOI: 10.1016/0076-6879(94)44045-x.

29. He W.T., Wan H., Hu L., Chen P., Wang X., Huang Z. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 2015;25(12):1285–1298. DOI: 10.1038/cr.2015.139.

30. Kayagaki N., Stowe I.B., Lee B.L., O’Rourke K., Anderson K., Warming S. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526(7575):666–671. DOI: 10.1038/nature15541.

31. Fang Y., Tian Sh., Pan Y., Li W., Wang Q., Tang Y. et al. Pyroptosis: a new frontier in cancer. Biomed. Pharmacother. 2020;121:109595. DOI: 10.1016/j.biopha.2019.109595.

32. Wei X., Xie F., Zhou X., Wu Y., Yan H., Liu T. et al. Role of pyroptosis in inflammation and cancer. Cell Mol. Immunol. 2022;19(9):971–992. DOI: 10.1038/s41423-022-00905-x.

33. Ding J., Wang K., Liu W., She Y., Sun Q., Shi J., Sun H. et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature. 2016;535(7610):111–116. DOI: 10.1038/nature18590.

34. Liu X., Zhang Z., Ruan J., Pan Y., Magupalli V.G., Wu H. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535(7610):153–158. DOI: 10.1038/nature18629.

35. Heilig R., Dick M.S., Sborgi L., Meunier E., Hiller S., Broz P. The Gasdermin-D pore acts as a conduit for IL-1β secretion in mice. Eur. J. Immunol. 2018;48(4):584–592. DOI: 10.1002/eji.201747404.

36. Evavold C.L., Ruan J., Tan Y., Xia S., Wu H., Kagan J.C. The pore-forming protein Gasdermin D regulates Interleukin-1 secretion from living macrophages. Immunity. 2018;48(1):35–44. DOI: 10.1016/j.immuni.2017.11.013.

37. Xiao J., Wang C., Yao J.C., Alippe Y., Xu C., Kress D. et al. Gasdermin D mediates the pathogenesis of neonatal-onset multisystem inflammatory disease in mice. PLoS Biol. 2018;16(11):e3000047. DOI: 10.1371/journal.pbio.3000047.

38. Saeki N., Kim D.H., Usui T., Aoyagi K., Tatsuta T., Aoki K. et al. GASDERMIN, suppressed frequently in gastric cancer, is a target of LMO1 in TGF-β-dependent apoptotic signalling. Oncogene. 2007;26(45):6488–6498. DOI: 10.1038/sj.onc.1210475.

39. Ruan J., Xia S., Liu X., Lieberman J., Wu H. Cryo-EM structure of the gasdermin A3 membrane pore. Nature. 2018;557(7703):62–67. DOI: 10.1038/s41586-018-0058-6.

40. Ghayur T., Banerjee S., Hugunin M., Butler D., Herzog L., Carter A. et al. Caspase-1 processes IFN-γ-inducing factor and regulates LPS-induced IFN-γ production. Nature. 1997;386:619–623. DOI: 10.1038/386619a0.

41. Gu Y., Kuida K., Tsutsui H., Ku G., Hsiao K., Fleming M.A. et al. Activation of interferon-gamma inducing factor mediated by interleukin-1β converting enzyme. Science. 1997;275(5297):206–209. DOI: 10.1126/science.275.5297.206.

42. Вартанян А.А., Косоруков В.С. Пироптоз – воспалительная форма клеточной гибели. Клиническая онкогематология. 2020;13(2):129–135. DOI: 10.21320/2500-2139-2020-13-2-129-135.

43. Gao W., Yang J., Liu W., Wang Y., Shao F. Site-specific phosphorylation and microtubule dynamics control Pyrin in flammasome activation. Proceedings of the National Academy of Sciences. 2016;113(33):E4857–E4866. DOI: 10.1073/pnas.1601700113.

44. Park Y.H., Wood G., Kastner D.L., Chae J.J. Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nature Immunology. 2016;17(8):914–921. DOI: 10.1038/ni.3457.

45. Liston A., Masters S.L. Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nat. Rev. Immunol. 2017;17(3):208–214. DOI: 10.1038/nri.2016.151.

46. Климентова Э.А., Сучков И.А., Егоров А.А., Калинин Р.Е. Маркеры апоптоза и пролиферации клеток при воспалительно-фибропролиферативных заболеваниях сосудистой стенки. Современные технологии в медицине. 2020;12(4):119–128. DOI: 10.17691/stm2020.12.4.13.

47. Anthoney N., Foldi I., Hidalgo A. Toll and toll-like receptor signalling in development. Development. 2018;145(9):dev156018. DOI: 10.1242/dev.156018.

48. Feng G., Zheng K., Cao T., Zhang J., Lian M., Huang D. et al. Repeated stimulation by LPS promotes the senescence of DPSCs via TLR4/MyD88-NF-κB-p53/p21 signaling. Cytotechnology. 2018;70(3):1023–1035. DOI: 10.1007/s10616-017-0180-6.

49. Wu K., Zhang H., Fu Y., Zhu Y., Kong L., Chen L. et al. TLR4/MyD88 signaling determines the metastatic potential of breast cancer cells. Mol. Med. Rep. 2018;18(3):3411–3420. DOI: 10.3892/mmr.2018.9326.

50. Dishon S., Schumacher-Klinger A., Gilon C., Hoffman A., Nussbaum G. Myristoylation confers oral bioavailability and improves the bioactivity of c(MyD 4-4), a cyclic peptide inhibitor of MyD88. Mol. Pharm. 2019;16(4):1516–1522. DOI: 10.1021/acs.molpharmaceut.8b01180.

51. Кудрявцева В.А., Кузьмин Е.А., Моисеева А.В., Обельчакова М.С., Синицына П.А., Филистович Т.И. и др. Молекулярные и морфологические маркеры гибели нейронов при острых нарушениях мозгового кровообращения. Сеченовский вестник. 2022;13(4):18–26. DOI: 10.47093/2218-7332.2022.13.4.18-32.

52. McKenzie B.A., Mamik M.K., Saito L.B., Boghozian R., Monaco M.C., Major E.O. et al. Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis. Proceedings of the National Academy of Sciences. 2018;115(26):E6065–E6074. DOI: 10.1073/pnas.

53. Rolls A., Shechter R., London A., Ziv Y., Ronen A., Levy R. et al. Toll-like receptors modulate adult hippocampal neurogenesis. Nat. Cell Biol. 2007;9(9):1081–2008. DOI: 10.1038/ncb1629.

54. Сергеева Т.Ф., Ширманова М.В., Загайнова Е.В., Лукьянов К.А. Современные методы исследования апоптотической гибели клеток (обзор). Современные технологии в медицине. 2015;7(3):172–182. DOI: 10.17691/stm2015.7.3.21.

55. Liu L., Sun B. Neutrophil pyroptosis: new perspectives on sepsis. Cellular and Molecular Life Sciences. 2019;76(11):2031–2042. DOI: 10.1007/s00018-019-03060-1.

56. Ouyang X., Zhou J., Lin L., Zhang Z., Luo S., Hu D. Pyroptosis, inflammasome and gasdermins in tumor immunity. Innate Immun. 2023;29(1-2):3–13. DOI: 10.1177/17534259221143216.

57. Frank D., Vince J.E. Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ. 2019;26(1):99–114. DOI: 10.1038/s41418-018-0212-6.

58. Bertheloot D., Latz E., Franklin B.S. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol. Immunol. 2021;18(5):1106–1121. DOI: 10.1038/s41423-020-00630-3.

59. Kaukonen K.-M., Bailey M., Pilcher D., Cooper D.J., Bellomo R. Systemic inflammatory response syndrome criteria in defining severe sepsis. N. Engl. J. Med. 2015;372(17):1629–1638. DOI: 10.1056/NEJMoa1415236.

60. Wei Y., Yang L., Pandeya A., Cui J., Zhang Y., Li Z. Pyroptosis-induced inflammation and tissue damage. J. Mol. Biol. 2022;434(4):167301. DOI: 10.1016/j.jmb.2021.167301.

61. Zheng X., Chen W., Gong F., Chen Y., Chen E. The role and mechanism of pyroptosis and potential therapeutic targets in sepsis: a review. Front. Immunol. 2021;12:711939. DOI: 10.3389/fimmu.2021.711939.

62. Sun Y.-B., Zhao H., Mu D.-L., Zhang W., Cui J., Wu L. et al. Dexmedetomidine inhibits astrocyte pyroptosis and subsequently protects the brain in in vitro and in vivo models of sepsis. Cell Death Dis. 2019;10(3):167. DOI: 10.1038/s41419-019-1416-5.

63. Li T., Sun H., Li Y., Su L., Jiang J., Liu Y. et al. Downregulation of macrophage migration inhibitory factor attenuates NLRP3 inflammasome mediated pyroptosis in sepsis-induced AKI. Cell Death Discov. 2022;8(1):61. DOI: 10.1038/s41420-022-00859-z.

64. Pai M.H., Wu J.M., Yang P.J., Lee P.C., Huang C.C., Yeh S.L. et al. Antecedent dietary glutamine supplementation benefits modulation of liver pyroptosis in mice with polymicrobial sepsis. Nutrients. 2020;12(4):1086. DOI: 10.3390/nu12041086.

65. Mierzchala-Pasierb M., Krzystek-Korpacka M., Lesnik P., Adamik B., Placzkowska S., Serek P. et al. Interleukin-18 serum levels in sepsis: correlation with disease severity and inflammatory markers. Cytokine. 2019;120:22–27. DOI: 10.1016/j.cyto.2019.04.003.

66. Wu Q., Xiao Z., Pu Y., Zhou J., Wang D., Huang Z. et al. TnI and IL-18 levels are associated with prognosis of sepsis. Postgraduate Medical Journal. 2019;95(1123):240–244. DOI: 10.1136/postgradmedj-2018-136371.

67. Sarkar A., Hall M.W., Exline M., Hart J., Knatz N., Gatson N.T. et al. Caspase-1 regulates Escherichia coli sepsis and splenic B cell apoptosis independently of interleukin-1beta and interleukin-18. Am. J. Respir. Crit. Care Med. 2006;174(9):1003–1010. DOI: 10.1164/rccm.200604-546OC.

68. Wang L., Zhao H., Xu H., Liu X., Chen X., Peng Q. et al. Targeting the TXNIP-NLRP3 interaction with PSSM1443 to suppress inflammation in sepsis-induced myocardial dysfunction. J. Cell Physiol. 2021;236(6):4625–4639. DOI: 10.1002/jcp.30186.

69. Cheng K.T., Xiong S., Ye Z., Hong Z., Di A., Tsang K.M. et al. Caspase-11-mediated endothelial pyroptosis underlies endotoxemia-induced lung injury. J. Clin. Invest. 2017;127(11):4124–4135. DOI: 10.1172/JCI94495.

70. Kalbitz M., Fattahi F., Grailer J.J., Jajou L., Malan E.A., Zetoune F.S. et al. Complement-induced activation of the cardiac NLRP3 inflammasome in sepsis. FASEB J. 2016;30(12): 3997–4006. DOI: 10.1096/fj.201600728R.

71. Busch K., Kny M., Huang N., Klassert T.E., Stock M., Hahn A. et al. Inhibition of the NLRP3/IL-1beta axis protects against sepsis-induced cardiomyopathy. J. Cachexia Sarcopenia Muscle. 2021;12(6):1653–1668. DOI: 10.1002/jcsm.12763.

72. Yu P., Zhang X., Liu N., Tang L., Peng C., Chen X. Pyroptosis: mechanisms and diseases. Signal Transduct. Target Ther. 2021;6(1):128. DOI: 10.1038/s41392-021-00507-5.

73. Tang R., Xu J., Zhang B., Liu J., Liang C., Hua J. et al. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J. Hematol. Oncol. 2020;13(1):110. DOI: 10.1186/s13045-020-00946-7.

74. Liu C., Cai B., Li D., Yao Y. Wolf-Hirschhorn syndrome candidate 1 facilitates alveolar macrophage pyroptosis in sepsis-induced acute lung injury through NEK7-mediated NLRP3 inflammasome activation. Innate Immun. 2021;27(6):437–447. DOI: 10.1177/17534259211035426.


Review

For citations:


Odintsova I.A., Chirsky V.S., Slutskaya D.R., Andreeva E.A., Berezovskaya T.I. Pyroptosis and its therapeutic potential. Bulletin of Siberian Medicine. 2024;23(2):142-150. https://doi.org/10.20538/1682-0363-2024-2-142-150

Views: 558


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)