Assessing functional suitability of a lyophilized formulation containing designed ankyrin repeat proteins for radionuclide imaging of HER2/neu overexpression in malignant tumors
https://doi.org/10.20538/1682-0363-2024-3-16-24
Abstract
Aim. To study in vitro and in vivo the functional suitability of 99mTc-labeled lyophilized formulation containing designed ankyrin repeat protein (DARPin) G3-(GGGS)3Cys for radionuclide imaging of HER2/neu overexpression in malignant tumors.
Materials and methods. To create a targeted protein, a modified genetic construct with the sequence encoding DARPin G3-(GGGS)3Cys was used. To generate the experimental probe, we used a lyophilized formulation containing DARPin G3-(GGGS)3Cys with auxiliary substances and 99mTc sodium pertechnetate (500 MBq) incubated at 60 °C for 30 min. Radiochemical purity of 99mTc-G3-(GGGS)3Cys was analyzed by thin-layer radiochromatography. SKOV-3, BT-474, and DU-145 cell lines were used to test binding specificity in vitro. The dissociation constant was determined via a saturation binding assay on SKOV-3 cells with a range of protein concentrations from 0.2 to 40 nM. Nu/j mice bearing HER2-positive SKOV-3 xenografts and HER2-negative Ramos xenografts were used to evaluate the targeting properties and biodistribution.
Results. A radiocomplex based on 99mTc and a lyophilized formulation with DARPin G3-(GGGS)3Cys was obtained with the radiochemical purity of more than 96%. Binding of 99mTc-G3-(GGGS)3Cys to the cells was specific (KD 3.9 ± 0.5 nM) and proportional to the level of HER2/neu expression in the cells. The uptake of 99mTc-G3-(GGGS)3Cys in SKOV-3 xenografts was significantly higher than in Ramos xenografts. 99mTc-G3-(GGGS)3Cys demonstrated rapid blood and renal clearance and had low activity in the salivary glands and stomach. Liver uptake was about 5–7%ID/g. In addition, 99mTc-G3-(GGGS)3Cys exhibited very low uptakes in the lungs, muscles, small intestine, and bones.
Conclusion. The 99mTc-labeled lyophilized formulation with DARPin G3-(GGGS)3Cys is functionally suitable for imaging HER2/neu overexpression in tumors, as it binds specifically to the receptor, is stable in vivo, and has favorable biodistribution in organs and tissues. The radiocomplex based on 99mTc-G3-(GGGS)3Cys was obtained by a simple method with high radiochemical purity.
About the Authors
R. N. VarvashenyaRussian Federation
Science and Education Laboratory for Chemical and Pharmaceutical Research, SibMed
2, Moscow Trakt, 634050;
30, Lenina Av., Tomsk, 634050
A. A. Prach
Russian Federation
30, Lenina Av., Tomsk, 634050
E. V. Plotnikov
Russian Federation
30, Lenina Av., Tomsk, 634050
S. M. Deev
Russian Federation
30, Lenina Av., Tomsk, 634050;
16/10, Miklukho – Maklaya Str., Moscow, 117997
M. V. Belousov
Russian Federation
Science and Education Laboratory for Chemical and Pharmaceutical Research, SibMed
2, Moscow Trakt, 634050;
30, Lenina Av., Tomsk, 634050
M. S. Larkina
Russian Federation
Science and Education Laboratory for Chemical and Pharmaceutical Research, SibMed
2, Moscow Trakt, 634050;
30, Lenina Av., Tomsk, 634050
V. I. Chernov
Russian Federation
30, Lenina Av., Tomsk, 634050;
5, Kooperativny Str., Tomsk, 634009
References
1. Roskoski R. Jr. Small molecule inhibitors targeting the EGFR/ErbB family of protein-tyrosine kinases in human cancers. Pharmacol. Res. 2019;139:395–411. DOI: 10.1016/j. phrs.2018.11.014.
2. Swain S.M., Shastry M., Hamilton E. Targeting HER2-positive breast cancer: advances and future directions. Nat. Rev. Drug Discov. 2023;22(2):101–126. DOI: 10.1038/s41573-02200579-0.
3. Giordano S.H., Franzoi M.A.B., Temin S., Anders C.K., Chandarlapaty S., Crews J.R. et al. Systemic therapy for advanced human epidermal growth factor receptor 2-positive breast cancer: ASCO guideline update. J. Clin. Oncol. 2022;40(23):2612–2635. DOI: 10.1200/jco.22.00519.
4. Al-Batran S.E., Moorahrend E., Maintz C., Goetze T.O., Hempel D., Thuss-Patience P. et al. Clinical practice observation of trastuzumab in patients with human epidermal growth receptor 2-positive metastatic adenocarcinoma of the stomach or gastroesophageal junction. Oncologist. 2020;25(8):e1181– 118e7. DOI: 10.1634/theoncologist.2020-0109.
5. Swain S.M., Miles D., Kim S.B., Im Y.H., Im S.A., Semiglazov V. et al. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA): endof-study results from a double-blind, randomised, placebo-controlled, phase 3 study. Lancet Oncol. 2020;21(4):519–530. DOI: 10.1016/s1470-2045(19)30863-0.
6. Lorusso D., Hilpert F., González Martin A., Rau J., Ottevanger P., Greimel E. et al. Patient-reported outcomes and final overall survival results from the randomized phase 3 PENELOPE trial evaluating pertuzumab in low tumor human epidermal growth factor receptor 3 (HER3) mRNA-expressing platinum-resistant ovarian cancer. Int. J. Gynecol. Cancer. 2019;29(7):1141–1147. DOI: 10.1136/ijgc-2019-000370.
7. Li B.T., Smit E.F., Goto Y., Nakagawa K., Udagawa H., Mazières J. et al. Trastuzumab deruxtecan in HER2-mutant non-small-cell lung cancer. N. Engl. J. Med. 2022;386(3):241– 251. DOI: 10.1056/NEJMoa2112431.
8. Tymon-Rosario J., Siegel E.R., Bellone S., Harold J., Adjei N., Zeybek B. et al. Trastuzumab tolerability in the treatment of advanced (stage III-IV) or recurrent uterine serous carcinomas that overexpress HER2/neu. Gynecol. Oncol. 2021;163(1):93– 99. DOI: 10.1016/j.ygyno.2021.07.033.
9. Modi S., Jacot W., Yamashita T., Sohn J., Vidal M., Tokunaga E. et al. Trastuzumab deruxtecan in previously treated HER2-Low advanced breast cancer. N. Engl. J. Med. 2022;387(1):9–20. DOI: 10.1056/NEJMoa2203690.
10. Брагина О.Д., Деев С.М., Гарбуков Е.Ю., Гольдберг В.Е., Чернов В.И., Толмачев В.М. Прямое сравнение диагностической эффективности радиофармацевтических препаратов на основе альтернативных каркасных протеинов [99mTc] Tc-ADAPT6 и [99mTc] Tc-(HE) 3-G3 у больных HER2-позитивным раком молочной железы. Бюллетень сибирской медицины. 2023;22(3):6–13.
11. Sörensen J., Velikyan I., Sandberg D., Wennborg A., Feldwisch J., Tolmachev V. et al. Measuring HER2-receptor expression in metastatic breast cancer using [68Ga]ABY-025 affibody PET/CT. Theranostics. 2016;6(2):262–271. DOI: 10.7150/thno.13502.
12. Deyev S., Vorobyeva A., Schulga A., Proshkina G., Güler R., Löfblom J. et al. Comparative evaluation of two DARPin variants: effect of affinity, size, and label on tumor targeting properties. Mol. Pharm. 2019;16(3):995–1008. DOI: 10.1021/acs.molpharmaceut.8b00922.
13. Bragina O., Chernov V., Larkina M., Rybina A., Zelchan R., Garbukov E. et al. Phase I clinical evaluation of (99m)Tc-labeled affibody molecule for imaging HER2 expression in breast cancer. Theranostics. 2023;13(14):4858–4871. DOI: 10.7150/thno.86770.
14. Plückthun A. Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annu. Rev. Pharmacol. Toxicol. 2015;55:489–511. DOI: 10.1146/annurev-pharmtox-010611-134654.
15. Goldstein R., Sosabowski J., Livanos M., Leyton J., Vigor K., Bhavsar G. et al. Development of the designed ankyrin repeat protein (DARPin) G3 for HER2 molecular imaging. Eur. J. Nucl. Med. Mol. Imaging. 2015;42(2):288–301. DOI: 10.1007/s00259-014-2940-2.
16. Vorobyeva A., Schulga A., Konovalova E., Güler R., Löfblom J., Sandström M. et al. Optimal composition and position of histidine-containing tags improves biodistribution of (99m)Tc-labeled DARPin G3. Sci. Rep. 2019;9(1):9405. DOI: 10.1038/s41598-019-45795-8.
17. Tolmachev V., Orlova A., Sörensen J. The emerging role of radionuclide molecular imaging of HER2 expression in breast cancer. Semin. Cancer Biol. 2021;72:185–197. DOI: 10.1016/j.semcancer.2020.10.005.
18. Bragina O., Chernov V., Schulga A., Konovalova E., Garbukov E., Vorobyeva A. et al. Phase I trial of (99m)Tc-(HE) (3)-G3, a DARPin-based probe for imaging of HER2 expression in breast cancer. J. Nucl. Med. 2022;63(4):528–535. DOI: 10.2967/jnumed.121.262542.
19. Larkina M., Plotnikov E., Bezverkhniaia E., Shabanova Y., Tretyakova M., Yuldasheva F. et al. Comparative preclinical evaluation of peptide-based chelators for the labeling of DARPin G3 with (99m)Tc for radionuclide imaging of HER2 expression in cancer. Int. J. Mol. Sci. 2022;23(21). DOI: 10.3390/ijms232113443.
20. Malakhov M.P., Mattern M.R., Malakhova O.A., Drinker M., Weeks S.D., Butt T.R. SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J. Struct Funct Genomics. 2004;5(1-2):75–86. DOI: 10.1023/b:Jsfg.0000029237.70316.52.
21. Cleland J.L., Jones A.J. Stable formulations of recombinant human growth hormone and interferon-gamma for microencapsulation in biodegradable microspheres. Pharm. Res. 1996;13(10):1464–1475. DOI: 10.1023/a:1016063109373.
22. Riihimäki M., Thomsen H., Sundquist K., Sundquist J., Hemminki K. Clinical landscape of cancer metastases. Cancer Med. 2018;7(11):5534–5542. DOI: 10.1002/cam4.1697.
23. Bragina O., Chernov V., Schulga A., Konovalova E., Hober S., Deyev S. et al. direct intra-patient comparison of scaffold protein-based tracers, [(99m)Tc]Tc-ADAPT6 and [(99m) Tc]Tc-(HE)(3)-G3, for imaging of HER2-positive breast cancer. Cancers (Basel). 2023;15(12). DOI: 10.3390/cancers15123149.
24. Bragina O., von Witting E., Garousi J., Zelchan R., Sandström M., Orlova A. et al. Phase I study of (99m)Tc-ADAPT6, a scaffold protein-based probe for visualization of HER2 expression in breast cancer. J. Nucl. Med. 2021;62(4):493–499. DOI: 10.2967/jnumed.120.248799.
Review
For citations:
Varvashenya R.N., Prach A.A., Plotnikov E.V., Deev S.M., Belousov M.V., Larkina M.S., Chernov V.I. Assessing functional suitability of a lyophilized formulation containing designed ankyrin repeat proteins for radionuclide imaging of HER2/neu overexpression in malignant tumors. Bulletin of Siberian Medicine. 2024;23(3):16-24. https://doi.org/10.20538/1682-0363-2024-3-16-24