Adipocytokine levels in patients with atherosclerosis and high triglyceride – glucose index
https://doi.org/10.20538/1682-0363-2024-3-34-41
Abstract
Aim. To study the levels of adipocytokines and their associations with stable and unstable atherosclerotic plaques in patients with a high triglyceride – glucose (TyG) index.
Materials and methods. The study included 109 men aged 38–79 years (mean age 62.28 ± 8.19 years) with atherosclerosis hospitalized for coronary artery bypass grafting (CABG). After microscopy of the intima – media layer, the type of atherosclerotic plaque was determined: stable / unstable. The TyG index ≥ 4.49 was considered as high. Fifty-eight (60%) men had stable plaques in the CA (28 (56%) of them had TyG ≥ 4.49); 39 (40%) men had unstable plaques in the CA (15 (39%) had TyG ≥ 4.49). Blood adipocytokine level was studied using the multiplex assay and the Human Metabolic Hormone Panel V3.
Results. The final analysis included 97 patients. The level of glucose-dependent insulinotropic polypeptide (GIP) was 1.53 times greater in patients with TyG ≥ 4.49 (34.16 [18.71; 54.98] vs. 22.34 [15.02; 34.77], p = 0.004). In patients with TyG < 4.49, the adipsin level was 1.2 times higher in patients with unstable plaques than in patients with stable ones. In patients with stable plaques and TyG ≥ 4.49, the GIP level was 1.88 times higher than in patients with TyG < 4.49 (42.13 [25.34; 68.95] vs. 22.39 [17.00; 28.60], p = 0.003). In patients with unstable plaques and TyG ≥ 4.49, the level of peptide tyrosine – tyrosine (PYY) was 1.46 times greater than in patients with TyG < 4.49 (46.14 [30.49; 70.66] vs. 31.53 [24.71; 43.01], p = 0.048).
Conclusion. Men with atherosclerosis and TyG ≥ 4.49 had higher blood levels of GIP and PYY. Blood adipsin levels were higher in patients with unstable plaques without insulin resistance.
About the Authors
E. V. GarbuzovaRussian Federation
175/1, B. Bogatkova Str., Novosibirsk, 630089
V. S. Shramko
Russian Federation
175/1, B. Bogatkova Str., Novosibirsk, 630089
E. V. Kashtanova
Russian Federation
175/1, B. Bogatkova Str., Novosibirsk, 630089
Ya. V. Polonskaya
Russian Federation
175/1, B. Bogatkova Str., Novosibirsk, 630089
E. M. Stakhneva
Russian Federation
175/1, B. Bogatkova Str., Novosibirsk, 630089
A. V. Kurguzov
Russian Federation
15, Rechkunovskaya Str., Novosibirsk, 630055
A. M. Chernyavsky
Russian Federation
15, Rechkunovskaya Str., Novosibirsk, 630055
Yu. I. Ragino
Russian Federation
175/1, B. Bogatkova Str., Novosibirsk, 630089
References
1. Ежов М.В., Кухарчук В.В., Сергиенко И.В., Алиева А.С., Анциферов М.Б., Аншелес А.А., Арабидзе Г.Г. и др. Нарушения липидного обмена. Клинические рекомендации 2023. Российский кардиологический журнал. 2023;28(5):5471. DOI: 10.15829/1560-4071-2023-5471.
2. Mach F., Baigent C., Catapano A.L., Koskinas K.C., Casula M., Badimon L. et al. ESC Scientific Document Group. 2019 ESC/ EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020;41(1):111–188. DOI: 10.1093/eurheartj/ehz455.
3. Libby P., Buring J.E., Badimon L., Hansson G.K., Deanfield J., Bittencourt M.S. et al. Atherosclerosis. Nat. Rev. Dis. Primers. 2019;5(1):56. DOI: 10.1038/s41572-019-0106-z.
4. Вербовой А.Ф., Вербовая Н.И., Долгих Ю.А. Ожирение – основа метаболического синдрома. Ожирение и метаболизм. 2021;18(2):142–149. DOI: 10.14341/omet12707.
5. Bays H.E., Jones P.H., Orringer C.E., Brown W.V., Jacobson T.A. National Lipid Association Annual Summary of Clinical Lipidology 2016. J. Clin. Lipidol. 2016;10(1Suppl.):S1–43. DOI: 10.1016/j.jacl.2015.08.002.
6. Morales-Gurrola G., Simental-Mendía L.E., Castellanos-Juárez F.X., Salas-Pacheco J.M., Guerrero-Romero F. The triglycerides and glucose index is associated with cardiovascular risk factors in metabolically obese normal-weight subjects. J. Endocrinol. Invest. 2020;43(7):995–1000. DOI: 10.1007/s40618-020-01184-x.
7. Garbuzova E.V., Shramko V.S., Kashtanova E.V., Polonskaya Y.V., Stakhneva E.M., Kurguzov A.V. et al. Adipokine-cytokine profile in patients with unstable atherosclerotic plaques and abdominal obesity. Int. J. Mol. Sci. 2023;24(10):8937. DOI: 10.3390/ijms24108937.
8. Waksman R., Seruys P.W., Schaar J. Handbook of the vulnerable plaque. 2nd ed. London, 2006;1–48. DOI: 10.3109/9781439804537.
9. Salazar J., Bermúdez V., Calvo M., Olivar L.C., Luzardo E., Navarro C. et al. Optimal cutoff for the evaluation of insulin resistance through triglyceride-glucose index: A cross-sectional study in a Venezuelan population. F1000Res. 2017;6:1337. DOI: 10.12688/f1000research.12170.3.
10. Yip R.G., Boylan M.O., Kieffer T.J., Wolfe M.M. Functional GIP receptors are present on adipocytes. Endocrinology. 1998;139(9):4004–4007. DOI: 10.1210/endo.139.9.6288.
11. Holst J.J. On the physiology of GIP and GLP-1. Horm. Metab. Res. 2004;36(11-12):747–754. DOI: 10.1055/s-2004-826158.
12. Meier J.J., Nauck M.A. Clinical endocrinology and metabolism. Glucose-dependent insulinotropic polypeptide/gastric inhibitory polypeptide. Best Pract. Res. Clin. Endocrinol. Metab. 2004;18(4):587–606. DOI: 10.1016/j.beem.2004.08.007.
13. Шестакова Е.А., Ильин А.В., Шестакова М.В., Дедов И.И. Глюкозозависимый инсулинотропный полипептид – новое звено в развитии ожирения. Ожирение и метаболизм. 2015;12(1):16–19. DOI: 10.14341/omet2015116-19.
14. Ukkola O.H., Puurunen V.P., Piira O.P., Niva J.T., Lepojärvi E.S., Tulppo M.P. et al. High serum fasting peptide YY (3-36) is associated with obesity-associated insulin resistance and type 2 diabetes. Regul. Pept. 2011;170(1-3):38–42. DOI: 10.1016/j.regpep.2011.05.006.
15. Boey D., Sainsbury A., Herzog H. The role of peptide YY in regulating glucose homeostasis. Peptides. 2007;28(2):390– 395. DOI: 10.1016/j.peptides.2006.07.031.
16. Boey D., Heilbronn L., Sainsbury A., Laybutt R., Kriketos A., Herzog H. et al. Low serum PYY is linked to insulin resistance in first-degree relatives of subjects with type 2 diabetes. Neuropeptides. 2006;40(5):317–324. DOI: 10.1016/j.npep.2006.08.002.
17. Lo J.C., Ljubicic S., Leibiger B., Kern M., Leibiger I.B., Moede T. et al. Adipsin is an adipokine that improves β cell function in diabetes. Cell. 2014;158(1):41–53. DOI: 10.1016/j.cell.2014.06.005.
18. Василенко М.А., Кириенкова Е.В., Скуратовская Д.А., Затолокин П.А., Миронюк Н.И., Литвинова Л.С. Роль продукции адипсина и лептина в формировании инсулинорезистентности у больных абдоминальным ожирением. Доклады Академии наук. 2017;475(3):336–341. DOI: 10.7868/S0869565217210228.
19. Ohtsuki T., Satoh K., Shimizu T., Ikeda S., Kikuchi N., Satoh T. et al. Identification of adipsin as a novel prognostic biomarker in patients with coronary artery disease. J. Am. Heart Assoc. 2019;8(23):e013716. DOI: 10.1161/JAHA.119.013716.
20. Sun R., Qiao Y., Yan G., Wang D., Zuo W., Ji Z. et al. Association between serum adipsin and plaque vulnerability determined by optical coherence tomography in patients with coronary artery disease. J. Thorac. Dis. 2021;13(4):2414–2425. DOI: 10.21037/jtd-21-259.
Review
For citations:
Garbuzova E.V., Shramko V.S., Kashtanova E.V., Polonskaya Ya.V., Stakhneva E.M., Kurguzov A.V., Chernyavsky A.M., Ragino Yu.I. Adipocytokine levels in patients with atherosclerosis and high triglyceride – glucose index. Bulletin of Siberian Medicine. 2024;23(3):34-41. https://doi.org/10.20538/1682-0363-2024-3-34-41