Preview

Bulletin of Siberian Medicine

Advanced search

Cardioprotective effect of lithium ascorbate in an in vivo model of myocardial infarction

https://doi.org/10.20538/1682-0363-2024-3-66-73

Abstract

The aim of the work was to study the cardioprotective effect of lithium ascorbate in an in vivo model of myocardial infarction. In the course of the study, we searched for compounds promising for therapy of acute myocardial infarction.

Materials and methods. Myocardial infarction was modeled in Wistar rats by ligating the left coronary artery (the duration of ischemia was 45 minutes) followed by ligature loosening and 120-minute reperfusion. All manipulations were performed under alpha-chloralose anesthesia with mechanical lung ventilation and recording heart rate, blood pressure, and ECG. Lithium ascorbate was administered intravenously at a dose of 100 mg / ml before ischemia. The area at risk (the ischemia / reperfusion zone) was detected by staining the myocardium with tightened ligature with 5% potassium permanganate. After that consecutive myocardial slices were prepared, and infarct size was determined. Differentiation of the infarct size from the area at risk was performed by staining with 1% 2,3,5-triphenyl tetrazolium chloride solution for 30 minutes at 37 ºC. The infarct size and the area at risk were determined by the planimetric method. The serum concentration of myocardial damage marker creatine kinase-MB (CK-MB) was measured using ELISA kits.

Results. Lithium ascorbate reduced the infarct size / area at risk ratio by 38% and decreased the serum CPKMB level in the experimental animals by 42% compared to the control group. Lithium ascorbate did not affect hemodynamics parameters during coronary artery occlusion and reperfusion.

Conclusion. The cardioprotective effect of lithium ascorbate in cardiac ischemia / reperfusion in vivo was found.

About the Authors

E. V. Plotnikov
National Research Tomsk Polytechnic University; Siberian State Medical University; Mental Health Research Institute, Tomsk National Research Medical Center (NRMC) of the Russian Academy of Sciences
Russian Federation

30, Lenina Av., Tomsk, 634050;
2, Moscow Trakt, Tomsk, 634050;
4, Aleutskaya Str., Tomsk, 634021



V. I. Chernov
National Research Tomsk Polytechnic University; Cancer Research Institute, Tomsk National Research Medical Center (NRMC) of the Russian Academy of Sciences
Russian Federation

30, Lenina Av., Tomsk, 634050;
5, Kooperativny Str., Tomsk, 634009



A. V. Mukhomedzyanov
Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

111a, Kievskaya Str., Tomsk, 634012



L. N. Maslov
Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

111a, Kievskaya Str., Tomsk, 634012



M. S. Yusubov
National Research Tomsk Polytechnic University
Russian Federation

30, Lenina Av., Tomsk, 634050



M. S. Larkina
National Research Tomsk Polytechnic University; Siberian State Medical University
Russian Federation

30, Lenina Av., Tomsk, 634050; 
2, Moscow Trakt, Tomsk, 634050



A. A. Artamonov
Institute for Biomedical Problems, Russian Academy of Sciences
Russian Federation

76a, Khoroshevskoe Highway, Moscow, 123007



M. V. Belousov
National Research Tomsk Polytechnic University; Siberian State Medical University
Russian Federation

30, Lenina Av., Tomsk, 634050; 
2, Moscow Trakt, Tomsk, 634050



References

1. Mensah G., Fuster V., Murray C., Roth A.G. Global burden of cardiovascular diseases and risks, 1990-2022. Journal of the American College of Cardiology. 2023;82(25):2350–2473. DOI: 10.1016/j.jacc.2023.11.007.

2. Здравоохранение в России, 2023: статистический сборник; под ред. С.М. Окладникова. М., 2023:179.

3. Gross E., Hsu A., Gross G. Opioid-induced cardioprotection occurs via glycogen synthase kinase beta inhibition during reperfusion in intact rat hearts. Circulation Research. 2004;94(7):960– 966. DOI: 10.1161/01.RES.0000122392.33172.09.

4. Maslov L.N., Khaliulin I., Oeltgen P.R., Naryzhnaya N.V., Pei J.M., Brown S.A. et al. Prospects for сreation of сardioprotective and antiarrhythmic drugs based on opioid receptor agonists. Medicinal Кesearch Кeview. 2016;36(5):871–923. DOI: 10.1002/med.21395.

5. Miura T., Miki T. Limitation of myocardial infarct size in the clinical setting: current status and challenges in translating animal experiments into clinical therapy. Basic Research in Cardiology. 2008;103(6):501–513. DOI: 10.1007/s00395-008-0743-y.

6. Xu J., Culman J., Blume A., Brecht S., Gohlke P. Chronic treatmentwithalowdoseoflithiumprotectsthebrainagainstischemic injury by reducing apoptotic death. Stroke. 2003;34(5):1287– 1292. DOI: 10.1161/01.STR.0000066308.25088.64.

7. Плотников Е.В., Литвак М.М. Применение аскорбата лития в качестве церебропротекторного средства на модели ишемического инсульта. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуск «Инсульт». 2020;3(2):29– 32. DOI: 10.17116/jnevro202012003229.

8. Haupt M., Bähr M., Doeppner T.R. Lithium beyond psychiatric indications: the reincarnation of a new old drug. Neural Regeneration Research. 2021;16(12):2383–2387. DOI: 10.4103/1673-5374.313015.

9. Faghihi M., Mirershadi F., Dehpour A. R., Bazargan M. Preconditioning with acute and chronic lithium administration reduces ischemia/reperfusion injury mediated by cyclooxygenase not nitric oxide synthase pathway in isolated rat heart. European Journal of Pharmacology. 2008;597(1-3):57–63. DOI: 10.1016/j.ejphar.2008.08.010.

10. Tretyakova M.S., Drozd A.G., Belousov M.V., Brazovskiy K.S., Larkina M.S., Krivoshchekov S.V. et al. Study of the radiosensitizing action of lithium ascorbate under neutron and photon irradiation of tumor cells. Drug Development & Registration. 2023;12(2):185–189. DOI: 10.33380/2305-2066-2023-12-2-185-189.

11. Schultz J.E., Yao Z., Cavero I., Gross G.J. Glibenclamide induced blockade of ischemic preconditioning is time dependent in intact rat heart. American Journal of Physiology. 1997;272(2):2607–2615. DOI: 10.1152/ajpheart.1997.272.6.H2607.

12. Neckár J., Sźárszoi O., Herget J., Ostádal B., Kolár F. Cardioprotective effect of chronic hypoxia is blunted by concomitant hypercapnia. Physiological Research. 2003;52(2):171–175.

13. Frampton J., Ortengren A.R., Zeitler E.P. Arrhythmias after acute myocardial nfarction. Yale Journal of Biology and Medicine. 2023;96(1):83–94. DOI: 10.59249/LSWK8578.

14. Sharma R., Chowdhary I., Sharma A. Arrhythmia and its risk factors post myocardial infarction: A prospective study. Journal of Acute Disease. 2022;11(1):26–31. DOI: 10.4103/22216189.336578.

15. Linakis J.G., Savitt D.L., Schuyler J.E., Simon P.M., Raymond R.M. Lithium has no direct effect on cardiac function in the isolated, perfused rat heart. Pharmacology & Toxicology. 2000;87(1):39–45. DOI: 10.1111/j.09019928.2000.870107.x.

16. Maslov L.N., Lishmanov Yu.B., Oeltgen P.R., Barzakh E.I., Krylatov A.V., Govindaswami M. et al. Activation of peripheral δ2 opioid receptors increases cardiac tolerance to ischemia/reperfusion injury: Involvement of protein kinase C, NO-synthase, KATP channels and the autonomic nervous system. Life Sciences. 2009;84(19-20):657–663. DOI: 10.1016/j.lfs.2009.02.016.

17. Nichols C.G. Adenosine triphosphate-sensitive potassium currents in heart disease and cardioprotection. Cardiac Electrophysiology Clinics. 2016;8(2):323–335. DOI: 10.1016/j.ccep.2016.01.005.


Review

For citations:


Plotnikov E.V., Chernov V.I., Mukhomedzyanov A.V., Maslov L.N., Yusubov M.S., Larkina M.S., Artamonov A.A., Belousov M.V. Cardioprotective effect of lithium ascorbate in an in vivo model of myocardial infarction. Bulletin of Siberian Medicine. 2024;23(3):66-73. https://doi.org/10.20538/1682-0363-2024-3-66-73

Views: 237


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)