Preview

Bulletin of Siberian Medicine

Advanced search

Features of structural and functional changes of the brain in patients with schizophrenia

https://doi.org/10.20538/1682-0363-2024-4-15-21

Abstract

Aim. To establish the features of structural and functional changes in the brain in patients with schizophrenia.

Materials and methods. A morphometric analysis of the brain using MRI scans was performed, along with a clinical assessment of the electroencephalogram (EEG) of 35 patients with schizophrenia (20 men and 15 women). The control group included 18 healthy sex- and age-matched individuals (10 men and 8 women). Statistical processing was carried out using the χ2 test, the Fisher’s exact test, and the Spearman’s rank correlation coefficient.

Results. Compared to the control group, patients with schizophrenia were significantly more likely to show signs of ventricular dilation (p = 0.039), asymmetry of the lateral ventricles (p = 0.041), periventricular edema (p < 0.001), and enlargement of the subarachnoid space of the cerebellum (p = 0.004). Changes (class >1A) in the functional activity of the brain in the group of patients with schizophrenia were detected in 65.7% of the cases. In more than half of the cases, patients with schizophrenia showed decreased bioelectric activity of the brain (class 2 in 48.6% and class 3 in 11.4%); at the same time, EEG signs of paroxysmal activity were detected in a few patients (class B in 11.4% and class C in 5.7%) (p < 0.001). A statistically significant direct correlation was found between the enlargement of the subarachnoid space of the cerebellum and paroxysmal EEG activity in patients with schizophrenia (r = 0.377; p = 0.044).

Conclusion. The findings of our study highlight that the combined use of MRI and EEG can provide important information about brain pathology in schizophrenia. The data obtained are also important for testing the hypothesis on the association between vascular and functional disorders of the brain in patients with schizophrenia.

About the Authors

S. A. Galkin
Mental Health Research Institute, Tomsk National Research Medical Center (NRMC), the Russian Academy of Sciences
Russian Federation

4, Aleutskaya Str., Tomsk, 634014



E. G. Kornetova
Mental Health Research Institute, Tomsk National Research Medical Center (NRMC), the Russian Academy of Sciences
Russian Federation

4, Aleutskaya Str., Tomsk, 634014



A. N. Kornetov
Siberian State Medical University
Russian Federation

2, Moscow Trakt, Tomsk, 634050



D. A. Petkun
Mental Health Research Institute, Tomsk National Research Medical Center (NRMC), the Russian Academy of Sciences
Russian Federation

4, Aleutskaya Str., Tomsk, 634014



N. A. Bokhan
Mental Health Research Institute, Tomsk National Research Medical Center (NRMC), the Russian Academy of Sciences; Siberian State Medical University
Russian Federation

4, Aleutskaya Str., Tomsk, 634014;

2, Moscow Trakt, Tomsk, 634050



References

1. Лебедева И.С. Поиск «сохранных» структурно-функциональных систем головного мозга как смена парадигмы в исследовании шизофрении. Журнал неврологии и психиатрии им. С.С. Корсакова. 2015;115(2):37–41. DOI: 10.17116/jnevro20151152137-41.

2. McCarley R.W., Nakamura M., Shenton M.E., Salisbury D.F. Combining ERP and structural MRI information in first episode schizophrenia and bipolar disorder. Clin. EEG Neurosci. 2008;39(2):57–60. DOI: 10.1177/155005940803900206.

3. Шамрей В.К., Пучков Н.А., Тарумов Д.А., Труфанов А.Г., Маркин К.В., Прочик Я.Е., Богдановская А.С. Микроструктурная патология головного мозга при параноидной шизофрении (по данным магнитно-резонансной трактографии). Психиатрия. 2023;21(2):38–49. DOI: 10.30629/2618-6667-2023-21-2-38-49.

4. Mørch-Johnsen L., Agartz I., Jensen J. The neural correlates of negative symptoms in schizophrenia: examples from MRI literature. Clin. EEG Neurosci. 2018;49(1):12–17. DOI: 10.1177/1550059417746214.

5. Ellison-Wright I., Glahn D.C., Laird A.R., Thelen S.M., Bullmore E. The anatomy of first-episode and chronic schizophrenia: an anatomical likelihood estimation meta-analysis. Am. J. Psychiatry. 2008;165(8):1015–1023. DOI: 10.1176/appi.ajp.2008.07101562.

6. Корнетова Е.Г., Коваль С.Д., Корнетов А.Н., Паршукова Д.А., Иванова С.А., Семке А.В. и др. Мозговая патология при шизофрении: связь с клиническими и конституциональными факторами. Якутский медицинский журнал. 2019;65(1):17–21. DOI: 10.25789/YMJ.2019.65.05.

7. Del Re E.C., Bouix S., Fitzsimmons J., Blokland G.A.M., Mesholam-Gately R., Wojcik J. et al. Diffusion abnormalities in the corpus callosum in first episode schizophrenia: Associated with enlarged lateral ventricles and symptomatology. Psychiatry Res. 2019;277:45–51. DOI: 10.1016/j.psychres.2019.02.038.

8. Kropotov J.D., Pronina M.V., Ponomarev V.A., Poliakov Y.I., Plotnikova I.V., Mueller A. Latent ERP components of cognitive dysfunctions in ADHD and schizophrenia. Clin. Neurophysiol. 2019;130(4):445–453. DOI: 10.1016/j.clinph.2019.01.015.

9. Rosburg T. Auditory N100 gating in patients with schizophrenia: A systematic meta-analysis. Clin. Neurophysiol. 2018;129(10):2099–2111. DOI: 10.1016/j.clinph.2018.07.012.

10. Lijffijt M., Cox B., Acas M.D., Lane S.D., Moeller F.G., Swann A.C. Differential relationships of impulsivity or antisocial symptoms on P50, N100, or P200 auditory sensory gating in controls and antisocial personality disorder. J. Psychiatr. Res. 2012;46(6):743–750. DOI: 10.1016/j.jpsychires.2012.03.001.

11. Галкин С.А., Корнетова Е.Г., Иванова С.А. Сравнительный анализ электроэнцефалограммы у больных шизофренией, получающих различные атипичные антипсихотики. Бюллетень сибирской медицины. 2024;23(1):15–22. DOI: 10.20538/1682-0363-2024-1-15-22.

12. Гашкаримов В.Р., Султанова Р.И., Ефремов И.С., Асадуллин А.Р. Использование методов машинного обучения в диагностике и прогнозировании клинических особенностей шизофрении: нарративный обзор литературы. Consortium Psychiatricum. 2023;4(3):43–53. DOI: 10.17816/CP11030.

13. Arora M., Knott V.J., Labelle A., Fisher D.J. Alterations of resting EEG in hallucinating and nonhallucinating schizophrenia patients. Clin. EEG Neurosci. 2021;52(3):159–67. DOI: 10.1177/1550059420965385.

14. Müller-Putz G.R. Electroencephalography. Handb. Clin. Neurol. 2020;168:249–262. DOI: 10.1016/B978-0-444-63934- 9.00018-4.

15. Mari-Acevedo J., Yelvington K., Tatum W.O. Normal EEG variants. Handb. Clin. Neurol. 2019;160:143–160. DOI: 10.1016/B978-0-444-64032-1.00009-6.

16. Liu Z., Ding L., He B. Integration of EEG/MEG with MRI and fMRI. IEEE Eng. Med. Biol. Mag. 2006;25(4):46–53. DOI: 10.1109/memb.2006.1657787.

17. Lancaster T.M., Dimitriadis S.I., Perry G., Zammit S., O’Donovan M.C., Linden D.E. Morphometric Analysis of Structural MRI Using Schizophrenia Meta-analytic Priors Distinguish Patients from Controls in Two Independent Samples and in a Sample of Individuals With High Polygenic Risk. Schizophr. Bull. 2022;48(2):524–532. DOI: 10.1093/schbul/sbab125.

18. Kay S.R., Fiszbein A., Opler L.A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin. 1987;13(2):261–276. DOI: 10.1093/schbul/13.2.261.

19. Мосолов С.Н. Шкалы психометрической оценки симптоматики шизофрении и концепция позитивных и негативных расстройств. М., 2001:238.

20. Micoulaud-Franchi J.A., Balzani C., Faugere M. Neurophysiologie clinique en psychiatrie: 1 – Techniques, vocabulaires et indications de l’électroencéphalographie conventionnelle. Annales Médico-psychologiques Revue Psychiatrique. 2013;171:334–341. DOI: 10.1016/j.amp.2013.04.005.

21. Chiapponi C., Piras F., Fagioli S., Piras F., Caltagirone C., Spalletta G. Age-related brain trajectories in schizophrenia: a systematic review of structural MRI studies. Psychiatry Res. 2013;214(2):83–93. DOI: 10.1016/j.pscychresns.2013.05.003.

22. Никитюк Б.А., Корнетов Н.А. Интегративная биомедицинская антропология. Томск: Томский государственный университет, 1998:82.

23. Sweet R.A., Bergen S.E., Sun Z., Marcsisin M.J., Sampson A.R., Lewis D.A. Anatomical evidence of impaired feedforward auditory processing in schizophrenia. Biol. Psychiatry. 2007;61(7):854–864. DOI: 10.1016/j.biopsych.2006.07.033.

24. Евстигнеев В.В., Кистень О.В. Базовые механизмы эпилептогенеза и эпилепсии. Весці Нацыянальнай акадэміі навук Беларусі. Серыя медыцынскіх навук. 2011;(3):106–114.

25. Rhodes R.H., Lehman R.M., Wu B.Y., Roychowdhury S. Focal chronic inflammatory epileptic encephalopathy in a patient with malformations of cortical development, with a review of the spectrum of chronic inflammatory epileptic encephalopathy. Epilepsia. 2007;48(6):1184–1202. DOI: 10.1111/j.1528-1167.2007.01034.x.

26. Boling W., Kore L. Subarachnoid hemorrhage-related epilepsy. Acta Neurochir. Suppl. 2020;127:21–25. DOI: 10.1007/978-3-030-04615-6_4.


Review

For citations:


Galkin S.A., Kornetova E.G., Kornetov A.N., Petkun D.A., Bokhan N.A. Features of structural and functional changes of the brain in patients with schizophrenia. Bulletin of Siberian Medicine. 2024;23(4):15-21. https://doi.org/10.20538/1682-0363-2024-4-15-21

Views: 412


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)