Changes in VEGFR1 and VEGFR2 expression and endothelial cell maturity in laboratory animals with a model of Alzheimer’s disease
https://doi.org/10.20538/1682-0363-2024-4-47-54
Abstract
Aim. To evaluate the expression of VEGFR1 and VEGFR2 and the maturity of endothelial cells in neurogenic niches in the model of Alzheimer’s disease.
Materials and methods. The study was carried out on 6-month-old male C57BL/6 mice. The experimental group (n = 15) received 2 µl of 1 mM Aβ25-35 solution in the CA1 hippocampal region, while the control group (n = 15) received normal saline. Brain plasticity was assessed at day 10, 17, and 38 after surgery by the passive avoidance test. The expression of VEGFR1, VEGFR2, and CLDN5 was assessed by immunohistochemistry and the Image ExFluorer imaging system.
Results. In the control group, cognitive training stimulated angiogenesis in the neurogenic niches of the brain, which was accompanied by the formation of microvasculature with fully mature endothelium. In the experimental group, an early and pronounced increase in the VEGFR1 expression was observed by day 7 after cognitive training, which was followed by impaired barrier formation and high VEGFR2 expression by day 28 after cognitive training. These changes were associated with the formation of small vessels with structural incompetence of endothelial cells.
Conclusion. Angiogenesis in neurogenic niches of the animals with the model of Alzheimer’s disease is characterized by incompetent mechanisms regulating the subpopulation composition of endothelial cells, impaired stabilization of the endothelial layer, and a decrease in the maturation rate of endothelial cells in newly formed microvessels by the time of cognitive deficit manifestation. This may contribute to microcirculatory dysfunction and impaired neurogenesis in neurogenic niches as well as to the development of pathological permeability and neuroinflammation. On the whole, the disruption of angiogenesis in neurogenic niches observed in the animal model of Alzheimer’s disease suggests a potential contribution of this mechanism to the development of aberrant brain plasticity.
About the Authors
M. V. KuklaRussian Federation
80, Volokolamskoye Highway, Moscow, 125367
A. S. Averchuk
Russian Federation
80, Volokolamskoye Highway, Moscow, 125367
A. V. Stavrovskaya
Russian Federation
80, Volokolamskoye Highway, Moscow, 125367
N. A. Rozanova
Russian Federation
80, Volokolamskoye Highway, Moscow, 125367
A. K. Berdnikov
Russian Federation
80, Volokolamskoye Highway, Moscow, 125367
N. A. Kolotyeva
Russian Federation
80, Volokolamskoye Highway, Moscow, 125367
A. B. Salmina
Russian Federation
80, Volokolamskoye Highway, Moscow, 125367
References
1. Sehar U., Rawat P., Reddy A.P., Kopel J., Reddy P.H. Amyloid beta in aging and Alzheimer’s disease. International Journal of Molecular Sciences. 2022;23(21):12924. DOI: 10.3390/ijms232112924.
2. Scopa C., Marrocco F., Latina V., Ruggeri F., Corvaglia V., La Regina. Impaired adult neurogenesis is an early event in Alzheimer’s disease neurodegeneration, mediated by intracellular Aβ oligomers. Cell Death & Differentiation. 2020;27(3):934– 948. DOI: 10.1038/s41418-019-0409-3.
3. Бурняшева А.О., Стефанова Н.А., Рудницкая Е.А. Нейрогенез в зрелом головном мозге: изменения при старении и развитии болезни Альцгеймера. Успехи геронтологии. 2020;33(6):1080–1087. DOI: 10.34922/AE.2020.33.6.008.
4. Komleva Y.K., Lopatina O.L., Gorina Y.V., Chernykh A.I., Trufanova L.V., Vais E.F. et al. Expression of NLRP3 inflammasomes in neurogenic niche contributes to the effect of spatial learning in physiological conditions but not in Alzheimer’s type neurodegeneration. Cellular and Molecular Neurobiology 2022;2(5):1355–1371. DOI: 10.1007/s10571-020-01021-y.
5. Alvarez-Vergara M.I., Rosales-Nieves A.E., March-Diaz R., Rodriguez-Perinan G., Lara-Ureña N., Ortega-de San Luis. Non-productive angiogenesis disassembles Aß plaque-associated blood vessels. Nature Communications. 2021;12(1):3098. DOI: 10.1038/s41467-021-23337-z.
6. Lin R., Cai J., Nathan C., Wei X., Schleidt S., Rosenwasser R. et al. Neurogenesis is enhanced by stroke in multiple new stem cell niches along the ventricular system at sites of high BBB permeability. Neurobiology of Disease. 2015;(74):229–239. DOI: 10.1016/j.nbd.2014.11.016.
7. Pozhilenkova E.A., Lopatina O.L., Komleva Y.K., Salmin V.V., Salmina A.B. Blood-brain barrier-supported neurogenesis in healthy and diseased brain. Reviews in the Neurosciences. 2017;28(4):397–415. DOI: 10.1515/revneuro-2016-0071.
8. Salmina A.B., Gorina Y.V., Komleva Y.K., Panina Y.A., Malinovskaya N.A. Early life stress and metabolic plasticity of brain cells: impact on neurogenesis and angiogenesis. Biomedicines. 2021;9(9):1092. DOI: 10.3390/biomedicines9091092.
9. Горина Я.В., Осипова Е.Д., Моргун А.В., Малиновская Н.А., Комлева Ю.К., Лопатина О.Л. и др. Аберрантный ангиогенез в ткани головного мозга при экспериментальной болезни Альцгеймера. Бюллетень сибирской медицины. 2020;19(4):46–52. DOI: 10.20538/1682-0363-2020-4-46-52.
10. Morgun A.V., Osipova E.D., Boitsova E.B., Lopatina O.L., Gorina Y.V., Pozhilenkova E.A. et al. Vascular component of neuroinflammation in experimental Alzheimer’s disease in mice. Cell and Tissue Biology. 2020;(14):256–262. DOI: 10.1134/S1990519X20040057.
11. Аверчук А.С., Рязанова М.В., Баранич Т.И., Ставровская А.В., Розанова Н.А., Новикова С.В. и др. Нейротоксическое действие β-амилоида сопровождается изменением митохондриальной динамики и аутофагии нейронов и клеток церебрального эндотелия в экспериментальной модели болезни Альцгеймера. Бюллетень экспериментальной биологии и медицины. 2023;175(3):291–297. DOI: 10.47056/0365-9615-2023-175-3-291-297.
12. Lei Y., Chen X., Mo J.L., Lv L.L., Kou Z.W., Sun F.Y. Vascular endothelial growth factor promotes transdifferentiation of astrocytes into neurons via activation of the MAPK/Erk‐Pax6 signal pathway. Glia. 2023;71(7):1648–1666. DOI: 10.1002/glia.24361.
13. Okabe K., Fukada H., Tai-Nagara I., Ando T., Honda T., Nakajima K. Neuron-derived VEGF contributes to cortical and hippocampal development independently of VEGFR1/2-mediated neurotrophism. Developmental Biology. 2020;459(2):65– 71. DOI: 10.1016/j.ydbio.2019.11.016.
14. Monaghan R.M., Page D.J., Ostergaard P., Keavney B.D. The physiological and pathological functions of VEGFR3 in cardiac and lymphatic development and related diseases. Cardiovascular Research. 2021;117(8):1877–1890. DOI: 10.1093/cvr/cvaa291.
15. Wittko-Schneider I.M., Schneider F.T., Plate K.H. Brain homeostasis: VEGF receptor 1 and 2 – two unequal brothers in mind. Cellular and Molecular Life Sciences. 2013;70(10):1705–1725. DOI: 10.1007/s00018-013-1279-3.
16. Argaw A.T., Asp L., Zhang J., Navrazhina K., Pham T., Mariani J.N. et al. Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. The Journal of Clinical Investigation. 2012;122(7):2454–2468. DOI: 10.1172/JCI60842.
17. De Smet F., Segura I., De Bock K., Hohensinner P.J., Carmeliet P. Mechanisms of vessel branching: filopodia on endothelial tip cells lead the way. Arteriosclerosis, Thrombosis, and Vascular Biology. 2009;29(5):639–649. DOI: 10.1161/ATVBAHA.109.185165.
18. Lacal P.M., Graziani G. Therapeutic implication of vascular endothelial growth factor receptor-1 (VEGFR-1) targeting in cancer cells and tumor microenvironment by competitive and non-competitive inhibitors. Pharmacological Research. 2018;136:97–107. DOI: 10.1016/j.phrs.2018.08.023.
19. Okabe K., Fukada H., Tai-Nagara I., Ando T., Honda T., Nakajima K. et al. Neuron-derived VEGF contributes to cortical and hippocampal development independently of VEGFR1/2-mediated neurotrophism. Developmental Biology. 2020;459(2):65–71. DOI: 10.1016/j.ydbio.2019.11.016.
20. Hashimoto Y., Greene C., Munnich A., Campbell M. The CLDN5 gene at the blood-brain barrier in health and disease. Fluids and Barriers of the CNS. 2023;20(1):22. DOI: 10.1186/s12987-023-00424-5.
21. Салмин В.В., Салмина А.Б., Моргун А.В. Патент РФ № 2020612777. Плагин для программы ImageJ для подсчета флуоресцентных меток на микрофотографиях. Бюллетень экспериментальной биологии и медицины. 2020;(3). Опубликовано 03.03.2020
22. Рязанова М.В., Аверчук А.С., Ставровская А.В., Розанова Н.А., Новикова С.В., Салмина А.Б. Особенности экспрессии Arc/Arg3.1 в ткани головного мозга при обучении животных с экспериментальной болезнью Альцгеймера. Анналы клинической и экспериментальной неврологии. 2023;17(3):49–56. DOI: 10.54101/ACEN.2023.3.6.
23. Naito H., Iba T., Takakura N. Mechanisms of new blood-vessel formation and proliferative heterogeneity of endothelial cells. International Immunology. 2020;32(5):295305. DOI: 10.1093/intimm/dxaa008.
24. Niklison-Chirou M.V., Agostini M., Amelio I., Melino G. Regulation of adult neurogenesis in mammalian brain. International Journal of Molecular Sciences. 2020;21(14):4869. DOI: 10.3390/ijms21144869.
Review
For citations:
Kukla M.V., Averchuk A.S., Stavrovskaya A.V., Rozanova N.A., Berdnikov A.K., Kolotyeva N.A., Salmina A.B. Changes in VEGFR1 and VEGFR2 expression and endothelial cell maturity in laboratory animals with a model of Alzheimer’s disease. Bulletin of Siberian Medicine. 2024;23(4):47-54. https://doi.org/10.20538/1682-0363-2024-4-47-54