Preview

Bulletin of Siberian Medicine

Advanced search

Phenotypic profile of blood monocytes and tumor-associated macrophages in relation to the expression of galectins 1 and 3 in colorectal cancer

https://doi.org/10.20538/1682-0363-2024-4-55-63

Abstract

Aim. To identify the features of the subpopulation composition of blood monocytes and tumor macrophages in relation to the plasma concentration and intratumoral expression of galectins 1 and 3 in patients with colorectal cancer.

Materials and methods. A total of 23 patients with colorectal cancer (ICD C18-20) were examined – 5 men and 18 women (average age 63.8 ± 9.4 years). The control group consisted of healthy volunteers; the comparison group encompassed age- and sex-matched patients with colon adenomas. The study materials included whole blood and tumor biopsies. The concentration of galectins 1 and 3 in the blood was determined by enzyme-linked immunosorbent assay, the content of tumor galectin-1+ and galectin-3+ cells – by immunohistochemistry. Subpopulations of blood monocytes were evaluated by flow cytometry; the macrophage immunophenotypes M1 (CD68+ CD80+ ) and M2d (CD68+ CD206+ ) in tumor tissues were determined using immunofluorescence staining. Statistical processing of the research results was performed by the Jamovi 2.3.21 software package for Windows.

Results. In patients with colorectal cancer (CRC), a positive relationship was identified between high plasma concentrations of galectins 1 and 3 and an imbalance of blood monocytes manifested by a decrease in the relative count of classical CD14++CD16- monocytes and, conversely, an increase in the number of non-classical CD14+CD16++ and intermediate CD14+ CD16- cells. The relative numbers of M1 (CD68+CD80+) and M2d (CD68+CD206+) macrophages in CRC tissue samples turned out to be comparable and did not depend on the level of galectins 1 and 3 in the blood and tumor. In patients with colon adenomas, the M2d subpopulation of tumorassociated macrophages was predominant (p = 0.031).

Conclusion. In patients with CRC, galectins 1 and 3 have a modulating effect on the ratio of non-classical CD14+CD16++, intermediate CD14+CD16- , and classical CD14++CD16- monocytes in the blood and do not affect the M1/M2d expression profile of tumor-associated macrophages.

About the Authors

A. V. Kurnosenko
Siberian State Medical University; Tomsk Regional Cancer Center
Russian Federation

2, Moscow Trakt, Tomsk, 634050;

115, Lenina Av., Tomsk, 634050



G. V. Reingardt
Siberian State Medical University; Tomsk Regional Cancer Center
Russian Federation

2, Moscow Trakt, Tomsk, 634050;

115, Lenina Av., Tomsk, 634050



V. S. Poletika
Siberian State Medical University
Russian Federation

2, Moscow Trakt, Tomsk, 634050



Yu. V. Kolobovnikova
Siberian State Medical University
Russian Federation

2, Moscow Trakt, Tomsk, 634050



S. P. Chumakova
Siberian State Medical University
Russian Federation

2, Moscow Trakt, Tomsk, 634050



O. I. Urazova
Siberian State Medical University
Russian Federation

2, Moscow Trakt, Tomsk, 634050



M. Yu. Grishchenko
Siberian State Medical University; Tomsk Regional Cancer Center
Russian Federation

2, Moscow Trakt, Tomsk, 634050;

115, Lenina Av., Tomsk, 634050



E. G. Churina
Siberian State Medical University
Russian Federation

2, Moscow Trakt, Tomsk, 634050



K. A. Gamirova
Siberian State Medical University; Tomsk Regional Cancer Center
Russian Federation

2, Moscow Trakt, Tomsk, 634050;

115, Lenina Av., Tomsk, 634050



References

1. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021;71(3):209–249. DOI: 10.3322/caac.21660.

2. Siegel R.L., Wagle N.S., Cercek A., Smith R.A., Jemal A. Colorectal cancer statistics, 2023. CA Cancer J. Clin. 2023;73(3):233–254. DOI: 10.3322/caac.21772.

3. Каприн А.Д., Старинский В.В., Шахзадова А.О. Состояние онкологической помощи населению России в 2021 году. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России. 2022:239.

4. Чердынцева Н.В., Митрофанова И.В., Булдаков М.А., Стахеева М.Н., Патышева М.Р., Завьялова М.В. и др. Макрофаги и опухолевая прогрессия: на пути к макрофагспецифичной терапии. Бюллетень сибирской медицины. 2017;16(4):61–74.

5. Chou F.C., Chen H.Y., Kuo C.C., Sytwu H.K. Role of galectins in tumors and in clinical immunotherapy. Int. J. Mol. Sci. 2018;19(2):430. DOI: 10.3390/ijms19020430.

6. Orozco C.A., Martinez-Bosch N., Guerrero P.E., Vinaixa J., Dalotto-Moreno T., Iglesias M. et al. Targeting galectin-1 inhibits pancreatic cancer progression by modulating tumor-stroma crosstalk. Proc. Natl. Acad. Sciю USA. 2018;115(16):e3769– 778. DOI: 10.1073/pnas.1722434115.

7. Lin Y.H., Qiu D.C., Chang W.H., Yeh Y.Q., Jeng U.S., Liu F.T. et al. The intrinsically disordered N-terminal domain of galectin-3 dynamically mediates multisite self-association of the protein through fuzzy interactions. J. Biol. Chem. 2017;292(43):17845–17856. DOI: 10.1074/jbc.M117.802793.

8. Патышева М.Р., Стахеева М.Н., Ларионова И.В., Тарабановская Н.А., Григорьева Е.С., Слонимская Е.М. и др. Моноциты при злокачественных новообразованиях: перспективы и точки приложения для диагностики и терапии. Бюллетень сибирской медицины. 2019;18(1):60–75. DOI: 10.20538/1682-0363-2019-1-60-75.

9. Zwager M.C., Bense R., Waaijer S., Qiu S.Q., Timmer-Bosscha H., de Vries E.G.E. et al. Assessing the role of tumour-associated macrophage subsets in breast cancer subtypes using digital image analysis. Breast Cancer Res. Treat. 2023;198(1):11–22. DOI: 10.1007/s10549-022-06859-y.

10. Колобовникова Ю.В., Уразова О.И., Полетика В.С., Рейнгардт Г.В., Романова Е.В., Курносенко А.В., и др. Особенности экспрессии галектинов 1 и 3 при раке толстого кишечника во взаимосвязи с клинико-морфологическими параметрами опухоли. Фундаментальная и клиническая медицина. 2021;6(4):45–53.

11. Ge X.N., Ha S.G., Liu F.T., Rao S.P., Sriramarao P. Eosinophil-expressed galectin-3 regulates cell trafficking and migration. Front. Pharmacol. 2013;4:37. DOI: 10.3389/fphar.2013.00037.

12. Cornejo-García J.A., Romano A., Guéant-Rodríguez R.M., Oussalah A., Blanca-López N., Gaeta F. et al. A non-synonymous polymorphism in galectin-3 lectin domain is associated with allergic reactions to beta-lactam antibiotics. Pharmacogenomics J. 2016;16(1):79–82. DOI: 10.1038/tpj.2015.24.

13. Chetry M., Thapa S., Hu X., Song Y., Zhang J., Zhu H. et al. The role of galectins in tumor progression, treatment and prognosis of gynecological cancers. J. Cancer. 2018;9(24):4742– 4755. DOI: 10.7150/jca.23628.

14. Ito K., Stannard K., Gabutero E., Clark A.M., Neo S.Y., Onturk S. et al. Galectin-1 as a potent target for cancer therapy: role in the tumor microenvironment. Cancer Metastasis Rev. 2012;31(3–4):763–778. DOI: 10.1007/s10555-012-9388-2.

15. Iqbal A.J., Sampaio A.L.F., Maione F., Greco K.V., Niki T., Hirashima M. et al. Endogenous galectin-1 and acute inflammation: emerging notion of a galectin-9 pro-resolving effect. Am. J. Pathol. 2011;178(3):1201–1209. DOI: 10.1016/j.ajpath.2010.11.073.

16. Rabinovich G.A., Conejo-García J.R.. Shaping the immune landscape in cancer by galectin-driven regulatory pathways. J. Mol. Biol. 2016;428(16):3266–3281. DOI: 10.1016/j.jmb.2016.03.021.

17. Якушина В.Д., Васильева О.А., Рязанцева Н.В., Новицкий В.В., Савельева О.Е., Прохоренко Т.С. и др. Галектин-1: роль в формировании особенностей врожденного и приобретенного иммунитета. Медицинская иммунология. 2012;14(1-2):21–32. DOI: 10.15789/1563-0625-2012-1-2- 21-32.

18. Kianoush F., Nematollahi M., Waterfield J.D., Brunette D.M. Regulation of RAW264.7 macrophage polarization on smooth and rough surface topographies by galectin-3. J. Biomed. Mater. Res. A. 2017;105(9):2499–2509. DOI: 10.1002/jbm.a.36107.

19. Novak R., Dabelic S., Dumic J. Galectin-1 and galectin-3 expression profiles in classically and alternatively activated human macrophages. Biochim. Biophys. Acta. 2012;1820(9):1383– 1390. DOI: 10.1016/j.bbagen.2011.11.014.

20. Dragomir A.C.D., Sun R., Choi H., Laskin J.D., Laskin D.L. Role of galectin-3 in classical and alternative macrophage activation in the liver following acetaminophen intoxication. J. Immunol. 2012;189(12):5934–5941. DOI: 10.4049/jimmunol.1201851.

21. Сарбаева Н.Н., Пономарева Ю.В., Милякова М.Н. Ма крофаги: разнообразие фенотипов и функций, взаимодействие с чужеродными материалами. Гены и клетки. 2016;11(1):9–17. DOI: 10.23868/gc120550.

22. Капитанова К.С., Науменко В.А., Гаранина А.С., Мельников П.А., Абакумов М.А., Алиева И.Б. Перспективы использования наночастиц для репрограммирования опухолевых макрофагов в иммунотерапии злокачественных новообразований. Биохимия. 2019;84(7):934–952. DOI: 10.1134/S0320972519070054.

23. Жгулева А.С., Зементова М.С., Сельков С.А., Соколов Д.И. Макрофаги М1/М2: происхождение, фенотип, способы получения, взаимодействие с естественными киллерами и трофобластом. Медицинская иммунология. 2024;26(3):425–448. DOI: 10.15789/1563-0625-MMO-2877.

24. Correa S.G., Sotomayor C.E., Aoki M.P., Maldonado C.A., Rabinovich G.A. Opposite effects of galectin-1 on alternative metabolic pathways of L-arginine in resident, inflammatory, and activated macrophages. Glycobiology. 2003;13(2):119– 128. DOI: 10.1093/glycob/cwg010.

25. Грачев А.Н., Самойлова Д.В., Рашидова М.А., Петренко А.А., Ковалева О.В. Макрофаги, ассоциированные с опухолью: современное состояние исследований и перспективы клинического использования. Успехи молекулярной онкологии. 2018;5(4):20–28.

26. Barrionuevo P., Beigier-Bompadre M., Ilarregui J.M., Toscano M.A., Bianco G.A., Isturiz M.A. et al. A novel function for galectin-1 at the crossroad of innate and adaptive immunity: galectin-1 regulates monocyte/macrophage physiology through a nonapoptotic ERK-dependent pathway. J. Immunol. 2007;178(1):436–445. DOI: 10.4049/jimmunol.178.1.436.

27. Baran B., Bechyne I., Siedlar M., Szpak K., Mytar B., Sroka J. et al. Blood monocytes stimulate migration of human pancreatic carcinoma cells in vitro: the role of tumour necrosis factor- alpha. Eur. J. Cell Biol. 2009;88(12):743–752. DOI: 10.1016/j.ejcb.2009.08.002.

28. Wu K., Lin K., Li X., Yuan X., Xu P., Ni P. et al. Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment. Front. Immunol. 2020;11:1731. DOI: 10.3389/fimmu.2020.01731.

29. Sindrilaru A., Peters T., Wieschalka S., Baican C., Baican A., Peter H. et al. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J. Clin. Invest. 2011;121(3):985–997. DOI: 10.1172/JCI44490.

30. Gong D., Shi W., Yi S., Chen H., Groffen J., Heisterkamp N. TGFβ signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol. 2012;13:31. DOI: 10.1186/1471-2172-13-31.

31. Bill R., Wirapati P., Messemaker M., Roh W., Zitti B., Duval F. et al. CXCL9:SPP1 macrophage polarity identifies a network of cellular programs that control human cancers. Science. 2023;381(6657):515–524. DOI: 10.1126/science.ade2292.

32. Jayasingam S.D., Citartan M., Thang T.H., Mat Zin A.A., Ang K.C., Ch’ng E.S. Evaluating the polarization of tumor-associated macrophages into M1 and M2 phenotypes in human cancer tissue: technicalities and challenges in routine clinical practice. Front. Oncol. 2020;24(9):1512. DOI: 10.3389/fonc.2019.01512.

33. Dunstan R.W., Wharton K.A., Quigley C., Lowe A. The use of immunohistochemistry for biomarker assessment – can it compete with other technologies? Toxicol. Pathol. 2011;39(6):988–1002. DOI: 10.1177/0192623311419163.

34. Da C., Mc K., Va M., An O., Yv B. CD68/macrosialin: not just a histochemical marker. Lab. Invest. 2017;97(1):4–13. DOI: 10.1038/labinvest.2016.116.

35. Fan W., Yang X., Huang F., Tong X., Zhu L. The Second Clinical Medical College ZCMU. Identification of CD206 as a potential biomarker of cancer stemlike cells and therapeutic agent in liver cancer. Oncology Letters. 2019;18(3):3218– 3226. DOI: 10.3892/ol.2019.10673.


Review

For citations:


Kurnosenko A.V., Reingardt G.V., Poletika V.S., Kolobovnikova Yu.V., Chumakova S.P., Urazova O.I., Grishchenko M.Yu., Churina E.G., Gamirova K.A. Phenotypic profile of blood monocytes and tumor-associated macrophages in relation to the expression of galectins 1 and 3 in colorectal cancer. Bulletin of Siberian Medicine. 2024;23(4):55-63. https://doi.org/10.20538/1682-0363-2024-4-55-63

Views: 182


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)