Preview

Bulletin of Siberian Medicine

Advanced search

Effects of forced treadmill exercise on lipid and carbohydrate metabolism parameters in a mouse model of type 2 diabetes mellitus

https://doi.org/10.20538/1682-0363-2024-4-82-94

Abstract

Aim. To study the effect of forced treadmill exercise on lipid and carbohydrate metabolism parameters in liver and skeletal muscle tissues of mice with a model of type 2 diabetes mellitus, taking into account age and biological rhythm characteristics.

Materials and methods. To create a model of type 2 diabetes mellitus (T2DM), a high-fat diet was used. Physical activity in the form of forced treadmill exercise was carried out for 4 weeks. Parameters of lipid and carbohydrate metabolism in muscle and liver tissues were determined by Western blotting.

Results. A decrease in glycogen content in the muscles in T2DM was associated with activation of its breakdown rather than with its reduced synthesis. Significant and multidirectional changes were recorded in the content of glycogen phosphorylase in the liver and skeletal muscle tissues. These changes were significantly influenced by both the nature of diet and physical activity. The development of T2DM in mice was accompanied by a decrease in high-density lipoprotein (HDL) content in the liver along with an increase in low-density lipoprotein (LDL) and very-low-density lipoprotein (VLDL) levels. It is worth noting that physical activity provided partial normalization of the ratio of lipid fractions, despite the fact that the exercises were performed in the context of a high-fat diet. In the T2DM group, metabolic changes caused by both T2DM modeling and physical exercises were not only quantitative, but in some cases also qualitative. The effects of physical exercises performed at different times of the day on metabolic processes in the liver and muscle tissues varied significantly.

Conclusion. Physical activity can help prevent not only metabolic disorders (obesity and insulin resistance), but also associated complications on the part of the liver and cardiovascular system.

About the Authors

K. G. Milovanova
National Research Tomsk State University
Russian Federation

36, Lenina Av., Tomsk, 634050



A. N. Zakharova
National Research Tomsk State University
Russian Federation

36, Lenina Av., Tomsk, 634050



A. A. Orlova
National Research Tomsk State University
Russian Federation

36, Lenina Av., Tomsk, 634050



O. V. Kollantay
National Research Tomsk State University
Russian Federation

36, Lenina Av., Tomsk, 634050



I. Yu. Shuvalov
National Research Tomsk State University
Russian Federation

36, Lenina Av., Tomsk, 634050



S. A. Popov
National Research Tomsk State University
Russian Federation

36, Lenina Av., Tomsk, 634050



M. A. Medvedev
Siberian State Medical University
Russian Federation

2, Moscow Tract, Tomsk, 634050



I. V. Kovalev
Siberian State Medical University
Russian Federation

2, Moscow Tract, Tomsk, 634050



I. Yu. Yakimovich
Siberian State Medical University
Russian Federation

2, Moscow Tract, Tomsk, 634050



A. V. Chibalin
National Research Tomsk State University
Russian Federation

36, Lenina Av., Tomsk, 634050



L. V. Kapilevich
National Research Tomsk State University; Siberian State Medical University; National Research Tomsk Polytechnic University
Russian Federation

36, Lenina Av., Tomsk, 634050;

2, Moscow Tract, Tomsk, 634050;

30, Lenina Av., Tomsk, 634050



References

1. Ouyang G., Wang N., Tong J., Sun W., Yang J., Wu G. Alleviation of taurine on liver injury of type 2 diabetic rats by improving antioxidant and anti-inflammatory capacity. Heliyon. 2024;10(7):E28400. DOI: 10.1016/j.heliyon.2024.e28400.

2. Кляритская И.Л., Максимова Е.В. Поражение печени у пациентов с сахарным диабетом. Крымский терапевтический журнал. 2010;2(2):8–13.

3. Fujimaki S., Kuwabara T. Diabetes-induced dysfunction of mitochondria and stem cells in skeletal muscle and the nervous system. Int. J. Mol. Sci. 2017;18(10):2147. DOI: 10.3390/ijms18102147.

4. Højlund K. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance. Dan. Med. J. 2014;61(7):B4890.

5. Barrera F., Uribe J., Olvares N., Huerta P., Cabrera D., Romero-Gómez M. The Janus of a disease: Diabetes and metabolic dysfunction-associated fatty liver disease. Ann. Hepatol. 2024;9(4):101501. DOI: 10.1016/j.aohep.2024.101501.

6. Капилевич Л.В., Захарова А.Н., Дьякова Е.Ю., Кироненко Т.А., Милованова К.Г., Калинникова Ю.Г., Чибалин А.В. Экспериментальная модель сахарного диабета II типа у мышей на основе диеты с избыточным содержанием жиров. Бюллетень сибирской медицины. 2019;18(3):53–61. DOI: 10.20538/1682-0363-2019-3-53-61.

7. Nagy C., Einwallner E. Study of In vivo glucose metabolism in high-fat diet-fed mice using oral glucose tolerance test (OGTT) and insulin tolerance test (ITT). J. Vis. Exp. 2018;7(131):1–12. DOI: 10.3791/56672.

8. Winzell M.S., Ahren B. The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes. 2004;53(3):S215– S219. DOI: 10.2337/diabetes.53.suppl_3.s215.

9. Brinkmann C., Schwinger R.H., Brixius K. Physical activity and endothelial dysfunction in type 2 diabetic patients: the role of nitric oxide and oxidative stress. Wien. Med. Wochenschr. 2011;161(11-12):305–314. DOI: 10.1007/s10354-011-0868-8.

10. Karstoft K., Pedersen B.K. Exercise and type 2 diabetes: focus on metabolism and inflammation. Immunol. Cell Biol. 2016;94:146–150. DOI: 10.1038/icb.2015.101.

11. Basse A.L., Dalbram E., Larsson L., Gerhart-Hines Z., Zierath J.R. Treebak J.T. Skeletal muscle insulin sensitivity show circadian rhythmicity which is independent of exercise training status. Front. Physiol. 2018;9:1198. DOI: 10.3389/fphys.2018.01198.

12. Zakharova A.N., Kalinnikova Y., Negodenko E.S., Orlova A.A., Kapilevich L.V. Experimental simulation of cyclic training loads. Teor. Prakt. Fizich. Kult. 2020;10:26–27.

13. Zakharova A.N., Milovanova K.G., Orlova A.A., Dyakova E.Y., Kalinnikova J.G., Kollantay O.V. et al. Effects of treadmill running at different light cycles in mice with metabolic disorders. Int. J. Mol. Sci. 2023;24:15132. DOI: 10.3390/ijms242015132.

14. Мохорт Т.В. Дислипидемия и сахарный диабет: новые данные. Медицинские новости. 2021;9:9–55.

15. He J., Kelley D.E. Muscle glycogen content in type 2 diabetes mellitus. Am. J. Physiol. Endocrinol. Metab. 2004;287(5): 1002–1007. DOI: 10.1152/ajpendo.00015.2004.

16. Hansen J.S., Zhao X., Irmler M., Liu X., Hoene M., Scheler M. et al. Type 2 diabetes alters metabolic and transcriptional signatures of glucose and amino acid metabolism during exercise and recovery. Diabetologia. 2015;58(8):1845–1854. DOI: 10.1007/s00125-015-3584-x.

17. Varra F.N., Varras M., Varra V.K., Theodosis-Nobelos P. Molecular and pathophysiological relationship between obesity and chronic inflammation in the manifestation of metabolic dysfunctions and their inflammation-mediating treatment options (Review). Mol. Med. Rep. 2024;29(6):95. DOI: 10.3892/mmr.2024.13219.

18. Meneilly G.S. Pathophysiology of diabetes in the elderly. In: Diabetes in old age. John Wiley & Sons. 2001;155–164. DOI: 10.1002/0470842326.ch2.

19. Raue U., Trappe T.A., Estrem S.T., Qian H-R., Helvering L.M., Smith R.C. et al. Transcriptomic signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults. J. Appl. Physiol 2012;112:1625– 1636. DOI: 10.1152/japplphysiol.00435.2011.

20. Zakharova A.N., Milovanova K.G., Orlova A.A., Kollantay O.V., Shuvalov I.Yu., Kapilevich L.V. Influence of light stress on the metabolic effects of runing loads in mice with a model of diabetes mellitus type II. Journal of Stress Physiology & Biochemistry. 2023;19(3):152–159. URL: https://sciup.org/143180562


Review

For citations:


Milovanova K.G., Zakharova A.N., Orlova A.A., Kollantay O.V., Shuvalov I.Yu., Popov S.A., Medvedev M.A., Kovalev I.V., Yakimovich I.Yu., Chibalin A.V., Kapilevich L.V. Effects of forced treadmill exercise on lipid and carbohydrate metabolism parameters in a mouse model of type 2 diabetes mellitus. Bulletin of Siberian Medicine. 2024;23(4):82-94. https://doi.org/10.20538/1682-0363-2024-4-82-94

Views: 147


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)