Preview

Bulletin of Siberian Medicine

Advanced search

Studying molecular interactions of synthetic glucocorticoids with TRPM8 by molecular docking

https://doi.org/10.20538/1682-0363-2024-4-136-144

Abstract

Aim. To carry out in silico screening of interactions of synthetic glucocorticoids with TRPM8.

Materials and methods. Information on the structure of the ligands was obtained from the PubChem chemical database in sdf format. The TRPM8 protein model was downloaded from the AlphaFold Protein Structure Database (AlpahaFold ID: AF-Q7Z2QW). Prediction of molecular cavities and coordinates of their centers was carried out on the PrankWeb web server. Modeling of molecular interactions was carried out using AutoDock (generation of 100 epochs) and MOE (generation of 300 poses) software.

Results. The study revealed that the ligands formed stable complexes with TRPM8, but all of them, except for beclomethasone dipropionate, did not interact with the Tyr745 amino acid residue (the key binding site for channel activation). Thus, it can be assumed that glucocorticoids are most likely inhibitors of this ion channel. Of all glucocorticoids, special attention was paid to prednisolone, flunisolide, and budesonide, since the results of molecular docking of these molecules using AutoDock and MOE showed comparable data.

Conclusion. The results obtained provide an insight into the therapeutic potential of these drugs in terms of their use in the treatment of cold-induced airway hyperresponsiveness and also expand the potential for their personalized use in the treatment of bronchial asthma and COPD.

About the Authors

P. D. Timkin
Amur State Medical Academy
Russian Federation

101, Gorkogo Str., Blagoveshchensk, 675001



D. D. Kotelnikov
Far Eastern State Agrarian University
Russian Federation

86, Politekhnicheskaya Str., Blagoveshchensk, 675005



E. A. Timofeev
Amur State Medical Academy
Russian Federation

101, Gorkogo Str., Blagoveshchensk, 675001



D. E. Naumov
Far Eastern Scientific Center for Physiology and Pathology of Respiration
Russian Federation

22, Kalinina Str., Blagoveshchensk, 675011



E. A. Borodin
Amur State Medical Academy
Russian Federation

101, Gorkogo Str., Blagoveshchensk, 675001



References

1. Bidaux G., Sgobba M., Lemonnier L., Borowiec A.S., Noyer L., Jovanovic S. et al. Functional and modeling studies of the transmembrane region of the TRPM8 channel. Biophys J. 2015;109(9):1840–1851. DOI: 10.1016/j.bpj.2015.09.027.

2. Andersen H.H., Olsen R.V., Møller H.G., Eskelund P.W., Gazerani P., Arendt‐Nielsen L. A review of topical high‐concentration l‐menthol as a translational model of cold allodyn ia and hyperalgesia. Eur. J. Pain. 2013;18(3):315–325. DOI: 10.1002/j.1532-2149.2013.00380.x.

3. Diver M.M., Cheng Y., Julius D. Structural insights into TRPM8 inhibition and desensitization. Science. 2019;365(6460):1434– 1440. DOI: 10.1126/science.aax6672.

4. Key F.M., Abdul-Aziz M.A., Mundry R., Peter B.M., Sekar A., D’Amato M. et al. Human local adaptation of the TRPM8 cold receptor along a latitudinal cline. PLoS Genet. 2018;14(5);e1007298. DOI: 10.1371/journal.pgen.1007298.

5. Sabnis A.S., Shadid M., Yost G.S., Reill C.A. Human lung epithelial cells express a functional cold-sensing TRPM8 variant. Am. J. Respir. Cell Mol. Biol. 2008;39(4):466–474. DOI: 10.1165/rcmb.2007-0440oc.

6. Sevilla L.M., Jiménez-Panizo A., Alegre-Martí A., Estébanez-Perpiñá E., Caelles C., Pérez P. Glucocorticoid resistance: Interference between the glucocorticoid receptor and the MAPK signalling pathways. Int. J. Mol. Sci. 2021;22(18):10049. DOI: 10.3390/ijms221810049.

7. Frank F., Ortlund E.A., Liu X. Structural insights into glucocorticoid receptor function. Biochem. Soc. Trans. 2021;49(5):2333–2343. DOI: 10.1042/bst20210419.

8. Méndez-Reséndiz K.A., Enciso-Pablo Ó., González-Ramírez R., Juárez-Contreras R., Rosenbaum T., Morales-Lázaro S.L. Steroids and TRP channels: A close relationship. Int. J. Mol. Sci. 2020;21(11):3819. DOI: 10.3390/ijms21113819.

9. Borodin E., Leusova N., Chupalov A., Timkin P., Timofeev E., Kolosov V. et al. The strategy for searching of potential ligands for TRPM8 based on use of deep neural networks and intermolecular docking. Eur. Respir. J. 2021;58:PA2383. DOI: 10.1183/13993003.congress-2021.PA2383.

10. Latorre M., Novelli F., Vagaggini B., Braido F., Papi A., Sanduzzi A. et al. Differences in the efficacy and safety among inhaled corticosteroids (ics)/long-acting beta2-agonists (LABA) combinations in the treatment of chronic obstructive pulmonary disease (COPD): Role of ICS. Pulm. Pharmacol. Ther. 2015;30:44–50. DOI: 10.1016/j.pupt.2014.10.006.

11. Ramakrishnan S. Prednisolone for COPD exacerbations: Time for a rethink. ERJ Open Res. 2023;9(5):00464–2023. DOI: 10.1183/23120541.00464-2023.

12. Melani A.S. Flunisolide for the treatment of asthma. Expert Rev. Clin Pharmacol. 2014;7(3):251–258. DOI: 10.1586/17512433.2014.908117.

13. Doymaz S., Ahmed Y.E., Francois D., Pinto R., Gist R., Steinberg M. et al. Methylprednisolone, dexamethasone or hydrocortisone for acute severe pediatric asthma: does it matter? J. Asthma. 2021;59(3):590–596. DOI: 10.1080/02770903.2020.1870130.

14. Sellers A.R., Roddy M.R., Darville K.K., Sanchez-Teppa B., McKinley S.D., Sochet A.A. Dexamethasone for pediatric critical asthma: A multicenter descriptive study. J. Intensive Care Med. 2022;37(11):1520–1527. DOI: 10.1177/08850666221082540.

15. Kwda A., Gldc P., Baui B., Kasr K., Us H., Wijeratne S. et al. Effect of long term inhaled corticosteroid therapy on adrenal suppression, growth and bone health in children with asthma. BMC Pediatr. 2019;19(1):411. DOI: 10.1186/s12887-019-1760-8.

16. Allen D.B. Inhaled corticosteroids and endocrine effects in childhood. Endocrinology and Metabolism Endocrinol. Meta.b Clin. North. Am. 2020;49(4):651–665. DOI: 10.1016/j.ecl.2020.07.003.

17. Тальдаев А.Х., Никитин И.Д., Терехов Р.П., Селиванова И.А. Молекулярный докинг: методологические подходы к оценке рисков. Разработка и регистрация лекарственных средств. 2023;12(2):206–210. DOI: 10.33380/2305-2066-2023-12-2-206-210.

18. Jakubec D., Skoda P., Krivak R., Novotny M., Hoksza D. PrankWeb 3: accelerated ligand-binding site predictions for experimental and modelled protein structures. Nucleic Acids Res. 2022;50(W1). DOI: 10.1093/nar/gkac389.

19. Jendele L., Krivak R., Skoda P., Novotny M., Hoksza D. PrankWeb: A web server for ligand binding site prediction and visualization. Nucleic Acids Res. 2019;47(W1). DOI: 10.1093/nar/gkz424.

20. Krivák R., Hoksza D. P2Rank: Machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure. J. Cheminfor. 2018;10:39. DOI: 10.1186/s13321-018-0285-8.

21. Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S. et al. AUTODOCK4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009;30(16):2785–2791. DOI: 10.1002/jcc.21256.

22. Velázquez-Libera J.L., Durán-Verdugo F., Valdés-Jiménez A., Núñez-Vivanco G., Caballero J. LigRMSD: a web server for automatic structure matching and RMSD calculations among identical and similar compounds in protein-ligand docking. Bioinformatics. 2020;36(9):2912–2914. DOI: 10.1093/bioinformatics/btaa018.

23. Castro-Alvarez A., Costa A., Vilarrasa J. The performance of several docking programs at reproducing protein–macrolide-like crystal structures. Molecules. 2017;22(1):136. DOI: 10.3390/molecules22010136.

24. Schrödinger L., DeLano W. PyMOL. 2020. URL: http://www.pymol.org/pymol

25. Malkia A., Pertusa M., Fernández-Ballester G., Ferrer-Montiel A., Viana F. Differential role of the menthol-binding residue Y745 in the antagonism of thermally gated TRPM8 channels. Mol. Pain. 2009;3(5):62. DOI: 10.1186/1744-8069-5-62.

26. Bertamino A., Ostacolo C., Medina A., Di Sarno V., Lauro G., Ciaglia T. et al. Exploration of TRPM8 binding sites by β-carboline-based antagonists and their in vitro characterization and in vivo analgesic activities. J. Med. Chem. 2020;3(17):9672– 9694. DOI: 10.1021/acs.jmedchem.0c00816.

27. Beccari A.R., Gemei M., Lo Monte M., Menegatti N., Fanton M., Pedretti A. et al. Novel selective, potent naphthyl TRPM8 antagonists identified through a combined ligandand structure-based virtual screening approach. Sci. Rep. 2017;7(1):10999. DOI: 10.1038/s41598-017-11194-0.


Review

For citations:


Timkin P.D., Kotelnikov D.D., Timofeev E.A., Naumov D.E., Borodin E.A. Studying molecular interactions of synthetic glucocorticoids with TRPM8 by molecular docking. Bulletin of Siberian Medicine. 2024;23(4):136-144. https://doi.org/10.20538/1682-0363-2024-4-136-144

Views: 125


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)