Preview

Bulletin of Siberian Medicine

Advanced search

The use of three-dimensional bioprinting for skin regeneration and wound healing (literature review)

https://doi.org/10.20538/1682-0363-2024-4-145-157

Abstract

Three-dimensional (3D) bioprinting is rapidly proliferating across many medical disciplines and is making strides towards manufacturing intricate human organs for clinical application. One of the most promising areas in 3D bioprinting is development of bioinks with certain composition and designed properties.

The aim of this systematic review was to assess current biomedical research evidence regarding the efficacy of 3D bioprinting for skin regeneration and wound healing. A comprehensive search for all applicable original articles was conducted according to pre-established eligibility criteria. The study employed PubMed, Web of Science, Scopus, Medline Ovid, and ScienceDirect databases.

Of the retrieved articles, eighteen satisfied the inclusion criteria, while twenty-three were excluded. A total of 159 animals that had wound defects were considered in all animal-based research. Collagen and gelatin hydrogels were the most commonly employed bioinks. In relation to cellular composition, allogeneic fibroblasts and keratinocytes were predominant. The observation period ranged from one day to six weeks. Complete wound closure was achieved within 2–4 weeks in most animal studies. In vitro and in vivo animal studies have shown a positive effect of printed bioengineered constructs in accelerating wound healing. Notably, the research where bioprinting was performed directly in the wound in situ was of particular interest. Further studies are required to enhance the tissue bioprinting technique to address skin wound healing in animal models. The utilization of standardized parameters may pave the way for human clinical studies.

About the Authors

I. A. Barsuk
S.M. Kirov Military Medical Academy
Russian Federation

6, Akademika Lebedeva Str., Saint Petersburg, 194044



K. P. Golovko
S.M. Kirov Military Medical Academy; Saint Petersburg State University
Russian Federation

6, Akademika Lebedeva Str., Saint Petersburg, 194044;

7–9, Universitetskaya Embankment, Saint Petersburg, 199034



V. N. Alexandrov
S.M. Kirov Military Medical Academy; Saint Petersburg State Pediatric Medical University
Russian Federation

6, Akademika Lebedeva Str., Saint Petersburg, 194044;

2, Litovskaya Str., Saint Petersburg, 194100



A. R. Khasanov
S.M. Kirov Military Medical Academy
Russian Federation

6, Akademika Lebedeva Str., Saint Petersburg, 194044



N. I. Edgeev
Branch No. 4 of Naval Clinical Hospital No. 1469
Russian Federation

22, Matrosa Ryabinina Str., Murmansk region, Zaozersk, 184310



R. I. Galiullin
Branch No. 4 of Naval Clinical Hospital No. 1469
Russian Federation

22, Matrosa Ryabinina Str., Murmansk region, Zaozersk, 184310



References

1. Sen C.K. Human wounds and its burden: an updated compendium of estimates. Adv. Wound Care. 2019;8(2):39–48. DOI: 10.1089/wound.2019.0946.

2. Beldon P. Basic science of wound healing. Surgery. 2010;28(9):409–412. DOI: 10.1016/j.mpsur.2010.05.007

3. Dhivya S., Padma V.V., Santhini E. Wound dressings – a review. BioMedicine. 2015;5(4):22. DOI: 10.7603/s40681-015-0022-9.

4. Chouhan D., Dey N., Bhardwaj N., Mandal B.B. Emerging and innovative approaches for wound healing and skin regeneration: status and advances. Biomaterials. 2019;216:119267. DOI: 10.1016/j.biomaterials.2019.119267.

5. Ferry P.W. Melchels, Marco A.N. Domingos, Travis J. Klein, Jos Malda, Paulo J. Bartolo, Dietmar W. Hutmacher. Additive manufacturing of tissues and organs. Prog. Polym. Sci. 2012;37(8):1079–1104. DOI: 10.1016/j.progpolymsci.2011.11.007.

6. He P., Zhao J., Zhang J., Li B., Gou Z., Gou M., Li X. Bioprinting of skin constructs for wound healing. Burn. Trauma. 2018;6:5. DOI: 10.1186/s41038-017-0104-x.

7. Groll J., Burdick J.A., Cho D.W., Derby B. Gelinsky M., Heilshorn S.C., Jüngst T. et al. A definition of bioinks and their distinction from biomaterial inks. Biofabrication. 2019;11(1):013001. DOI: 10.1088/1758-5090/aaec52.

8. Cui H., Nowicki M., Fisher J.P., Zhang L.G. 3D bioprinting for organ regeneration. Advanced Healthcare Materials. 2017;6(1):1601118. DOI:10.1002/adhm.201601118.

9. Gopinathan J., Noh I. Recent trends in bioinks for 3D printing. Biomater. Res. 2018;22:1–15. DOI: 10.1186/s40824-018-0122-1.

10. Panwar A., Tan L.P. Current status of bioinks for micro-extrusion-based 3D bioprinting. Molecules. 2016;21(6):685. DOI: 10.3390/molecules21060685.

11. Xia Z., Jin S., Ye K. Tissue and оrgan 3D вioprinting. SLAS Technol. 2018;23(4):301–314. DOI: 10.1177/24726 30318760515.

12. Ng W.L., Wang S., Yeong W.Y., Naing M.W. Skin bioprinting: impending reality or fantasy? Trends Biotechnol. 2016;34(9):689–699. DOI: 10.1016/j.tibtech.2016.04.006.

13. Kumar A., Starly B. Large scale industrialized cell expansion: Producing the critical raw material for biofabrication processes. Biofabrication. 2015;7(4):44103. DOI: 10.1088/1758-5090/7/4/044103.

14. Griffith L.G., Swartz M.A. Capturing complex 3D tissue physiology in vitro. Nature Reviews Molecular Cell Biology. 2006;7(3):211–224. DOI: 10.1038/nrm1858.

15. Ahmed E.M. Hydrogel: рreparation, characterization, and applications: A review. J. Adv. Res. 2015;6(2):105–121. DOI: 10.1016/j.jare.2013.07.006.

16. Yamamoto M., James D., Li H., Butler J., Rafii S., Rabbany S. Generation of stable co-cultures of vascular cells in a honeycomb alginate scaffold. Tissue Engineering. Part A. 2010;16(1):299–308. DOI: 10.1089/ten.TEA.2009.0010.

17. Thomas B.H., Craig Fryman J., Liu K., Mason J. Hydrophilichydrophobic hydrogels for cartilage replacement. Journal of the Mechanical Behavior of Biomedical Materials. 2009;2(6):588–595. DOI: 10.1016/j.jmbbm.2008.08.001.

18. Zhu J., Marchant R.E. Design properties of hydrogel tissue-engineering scaffolds. Expert Review of Medical Devices. 2011;8(5):607–626. DOI: 10.1586/erd.11.27.

19. Montero F.E., Rezende R.A., da Silva J.V., Sabino M.A. Development of a smart bioink for bioprinting applications. Front. Mech. Eng. 2019;5(56):1–12. DOI: 10.3389/fmech.2019.00056.

20. Valot L., Martinez J., Mehdi A., Subra G. Chemical insights into bioinks for 3D printing. Chem. Soc. Rev. 2019;48(15):4049–4086. DOI: 10.1039/C7CS00718C.

21. Kim J.E., Kim S.H., Jung Y. Current status of three-dimensional printing inks for soft tissue regeneration. Tissue Eng. Regen. Med. 2016;13(6):636–646. DOI: 10.1007/s13770-016-0125-8.

22. Liberati A., Altman D.G., Tetzlaff J., Mulrow C., Gøtzsche P.C., Ioannidis J.P. et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009;62(10):e1–34. DOI: 10.1016/j.jclinepi.2009.06.006.

23. Heidenreich A.C., Pérez-Recalde M., González Wusener A., Hermida É.B. Collagen and chitosan blends for 3D bioprinting: A rheological and printability approach. Polym. Test. 2020;82:106297. DOI: 10.1016/j.polymertesting.2019.106297.

24. Xu W., Molino B.Z., Cheng F., Molino P.J., Yue Z., Su D. et al. On low-concentration inks formulated by nanocellulose assisted with gelatin methacrylate (GelMA) for 3D printing toward wound healing application. ACS Appl. Mater. Interfaces. 2019;11(9):8838–8848. DOI: 10.1021/acsami.8b21268.

25. Chen X., Yue Z., Winberg P.C., Dinoro J.N., Hayes P., Beirne S., Wallace G.G. Development of rhamnose-rich hydrogels based on sulfated xylorhamno-uronic acid toward wound healing applications. Biomater. Sci. 2019;7(8):3497– 3509. DOI: 10.1039/C9BM00480G.

26. Shi L., Hu Y., Ullah M.W., Ullah I., Ou H., Zhang W. et al. Cryogenic free-form extrusion bioprinting of decellularized small intestinal submucosa for potential applications in skin tissue engineering. Biofabrication. 2019;11(3):035023. DOI: 10.1088/1758-5090/ab15a9.

27. Osidak E.O., Karalkin P.A., Osidak M.S., Parfenov V.A., Sivogrivov D.E., Pereira F.D.A.S. et al. Viscoll collagen solution as a novel bioink for direct 3D bioprinting. J. Mater. Sci. Mater. Med. 2019;30(3):31. DOI: 10.1007/s10856-019-6233-y.

28. Liu P., Shen H., Zhi Y., Si J., Shi J., Guo L. et al. 3D bioprinting and in vitro study of bilayered membranous construct with human cells-laden alginate/gelatin composite hydrogels. Colloids Surfaces B Biointerfaces. 2019;181:1026–1034. DOI: 10.1016/j.colsurfb.2019.06.069.

29. Huang L., Du X., Fan S., Yang G., Shao H., Li D. et al. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores. Carbohydr. Polym. 2019;221:146–156. DOI: 10.1016/j.carbpol.2019.05.080.

30. Albanna M., Binder K.W., Murphy S.V., Kim J., Qasem S.A., Zhao W. et al. In situ bioprinting of autologous skin cells accelerates wound healing of extensive excisional full-thickness wounds. Sci. Rep. 2019;9(1):1–15. DOI: 10.1038/s41598- 018-38366-w.

31. Xu C., Zhang Molino B., Wang X., Cheng F., Xu W., Molino P. et al. 3D printing of nanocellulose hydrogel scaffolds with tunable mechanical strength towards wound healing application. J. Mater. Chem. B. 2018;6(43):7066–7075. DOI: 10.1039/C8TB01757C.

32. Shi L., Xiong L., Hu Y., Li W., Chen Z.C., Liu K. et al. Three-dimensional printing alginate/gelatin scaffolds as dermal substitutes for skin tissue engineering. Polym. Eng. Sci. 2018;58(10):1782–1790. DOI: 10.1002/pen.24779.

33. Nocera A.D., Comín R., Salvatierra N.A., Cid M.P. Development of 3D printed fibrillar collagen scaffold for tissue engineering. Biomed. Microdevices. 2018;20(2):1–13. DOI: 10.1007/s10544-018-0270-z.

34. Kim B.S., Kwon Y.W., Kong J.S., Park G.T., Gao G., Han W. et al. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: A step towards advanced skin tissue engineering. Biomaterials. 2018;168:38–53. DOI: 10.1016/j.biomaterials.2018.03.040.

35. Datta S., Sarkar R., Vyas V., Bhutoria S., Barui A., Chowdhury A.R. et al. Alginate-honey bioinks with improved cell responses for applications as bioprinted tissue engineered constructs. J. Mater. Res. 2018;33:2029–2039. DOI: 10.1557/jmr.2018.202.

36. Dong J.C., Sang J.P., Bon K.G., Young-Jin K., Seok C., Chun-Ho K. Effect of the pore size in a 3D bioprinted gelatin scaffold on fibroblast proliferation. J. Ind. Eng. Chem. 2018;67:388–395. DOI: 10.1016/j.jiec.2018.07.013.

37. Chen C.S., Zeng F., Xiao X., Wang Z., Li X.L., Tan R.W. et al. Three-dimensionally printed silk-sericin-based hydrogel scaffold: a promising visualized dressing material for real-time monitoring of wounds. ACS Appl. Mater. Interfaces. 2018;10(40):33879–33890. DOI: 10.1021/acsami.8b10072.

38. Xiong S., Zhang X., Lu P., Wu Y., Wang Q., Sun H. et al. A Gelatin-sulfonated silk composite scaffold based on 3D printing technology enhances skin regeneration by stimulating epidermal growth and dermal neovascularization. Sci. Rep. 2017;7(1):1–12. DOI: 10.1038/s41598-017-04149-y.

39. Liu J., Chi J., Wang K., Liu X., Gu F. Full-thickness wound healing using 3D bioprinted gelatin-alginate scaffolds in mice: A histopathological study. Int. J. Clin. Exp. Pathol. 2016;9:11197–11205.

40. Lee V., Singh G., Trasatti J.P., Bjornsson C., Xu X., Tran T.N. et al. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng. Part C Methods. 2014;20(6):473–484. DOI: 10.1089/ten.tec.2013.0335.

41. Guillemot F., Mironov V., Nakamura M. Bioprinting is coming of age: report from the international conference on bio printing and bio fabrication in Bordeaux (3B’09). Biofabrication. 2010;2(1):010201. DOI: 10.1088/1758-5082/2/1/010201.

42. Peltola S.M., Melchels F.P., Grijpma D.W., Kellomäki M. A review of rapid prototyping techniques for tissue engineering purposes. Ann. Med. 2008;40(4):268–280. DOI: 10.1080/07853890701881788.

43. Malda J., Visser J., Melchels F.P., Jüngst T., Hennink W.E., Dhert W.J. et al. 25th anniversary article: Engineering hydrogels for biofabrication. Advanced materials (Deerfield Beach, Fla.). 2013;25(36):5011–5028. DOI: 10.1002/adma.201302042.

44. Chang R., Nam J., Sun W. Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng. Part A. 2008;14(1):41–48. DOI: 10.1089/ten.a.2007.0004.

45. Gaspar-Pintiliescu A., Stefan L.M., Anton E.D., Berger D., Matei C., Negreanu-Pirjol T. et al. Physicochemical and biological properties of gelatin extracted from marine snail Rapana venosa. Marine Drugs. 2019;17(10):589. DOI: 10.3390/md17100589.

46. Chiou B., Avena-Bustillos R.D., Bechtel P.J., Jafri H., Narayan R., Imama S.H. et al. Cold water fish gelatin films: Effects of cross-linking on thermal, mechanical, barrier, and biodegradation properties. European Polymer Journal. 2008;44(11):3748– 3753. DOI: 10.1016/j.eurpolymj.2008.08.011.

47. Sakai S., Hirose K., Taguchi K., Ogushi Y., Kawakami K. An injectable, in situ enzymatically gellable, gelatin derivative for drug delivery and tissue engineering. Biomateri als. 2009;30(20):3371–3377. DOI: 10.1016/j.biomaterials.2009.03.030.

48. Jung H., Pena-Francesch A., Saadat A., Sebastian A., Kim D.H., Hamilton R.F. et al. Molecular tandem repeat strategy for elucidating mechanical properties of high-strength proteins. Proceedings of the National Academy of Sciences of the United States of America. 2016;113(23):6478–6483. DOI: 10.1073/pnas.1521645113.

49. Ozbolat I.T., Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials. 2016;76:321–343. DOI: 10.1016/j.biomaterials.2015.10.076.

50. Dzobo K., Motaung K.S.C.M., Adesida A. Recent trends in decellularized extracellular matrix bioinks for 3D printing: An updated review. Int. J. Mol. Sci. 2019;20(18):4628. DOI: 10.3390/ijms20184628.

51. Mitchell A.C., Briquez P.S., Hubbell J.A., Cochran J.R. Engineering growth factors for regenerative medicine applications. Acta Biomater. 2016;30:1–12. DOI: 10.1016/j.actbio.2015.11.007.


Review

For citations:


Barsuk I.A., Golovko K.P., Alexandrov V.N., Khasanov A.R., Edgeev N.I., Galiullin R.I. The use of three-dimensional bioprinting for skin regeneration and wound healing (literature review). Bulletin of Siberian Medicine. 2024;23(4):145-157. https://doi.org/10.20538/1682-0363-2024-4-145-157

Views: 200


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)