Ангиогенин: биологическая роль, механизмы действия и участие в онкогенезе
https://doi.org/10.20538/1682-0363-2024-4-169-176
Аннотация
Ангиогенин – небольшой полипептид, состоящий из 123 аминокислот, вовлеченный в процессы ангиогенеза и онкогенеза. Данный белок играет важную роль в различных физиологических и патологических процессах посредством регуляции пролиферации, выживания, миграции, инвазии и дифференцировки клеток.
В лекции представлены данные о получении, взаимодействии ангиогенина с различными белками, приведены механизмы действия, показана биологическая роль в ангиогенезе и онкогенезе. Поиск литературы осуществлялся в поисковых системах PubMed, Medline, Elibrary, Scopus, The Cochrane Library, РИНЦ.
Об авторах
Д. Е. МихалевРоссия
Михалев Дмитрий Евгеньевич – ассистент, кафедра стоматологии,
634050, г. Томск, Московский тракт, 2
С. Н. Коротенко
Россия
Коротенко Сергей Николаевич – аспирант, кафедра стоматологии,
634050, г. Томск, Московский тракт, 2
А. Ю. Ломовских
Россия
Ломовских Анастасия Юрьевна – студент, лечебный факультет,
634050, г. Томск, Московский тракт, 2
О. Д. Байдик
Россия
Байдик Ольга Дмитриевна – д-р мед. наук, профессор, зав. кафедрой стоматологии,
634050, г. Томск, Московский тракт, 2
Список литературы
1. Wee P., Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel). 2017;9(5):52–65. DOI: 10.3390/cancers9050052.
2. Schenck K., Schreurs O., Hayashi K., Helgeland K. The role of nerve growth factor (NGF) and its precursor forms in oral wound healing. International Journal of Molecular Sciences. 2017;18(2):386–398. DOI: 10.3390/ijms18020386.
3. Hume R.D., Deshmukh T., Doan T., Shim W.J., Kanagalingam S., Tallapragada V. et al. PDGF-AB reduces myofibroblast differentiation without increasing proliferation after myocardial infarction. JACC. Basic to Translational Science. 2023;(8)6:658–674. DOI: 10.1016/j.jacbts.2022.11.006
4. Yamakawa S., Hayashida K. Advances in surgical applications of growth factors for wound healing. Burns & Trauma. 2019;7:10–17. DOI: 10.1186/s41038-019-0148-1.
5. Mihaylova Z., Tsikandelova R., Sanimirov P., Gateva N., Mitev V., Ishkitiev N. Role of PDGF-BB in proliferation, differentiation and maintaining stem cell properties of PDL cells in vitro. Archives of Oral Biology. 2018;85:1–9. DOI: 10.1016/j.archoralbio.2017.09.019.
6. Heldin C.H., Lennartsson J., Westermark B. Involvement of platelet-derived growth factor ligands and receptors in tumorigenesis. Journal of Internal Medicine. 2018;283(1):16–44. DOI: 10.1111/joim.12690.
7. Lyons S.M., Fay M.M., Akiyama Y., Anderson P.J., Ivanov P. RNA biology of angiogenin: current state and perspectives. RNA Biology. 2017;14(2):171–178. DOI: 10.1080/15476286.2016.1272746.
8. Lugano R., Ramachandra M., Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cellular and Molecular Life Sciences. 2020;77:1745–1770. DOI: 1007/s00018-019-03351-7.
9. Isali I., Al-Sadawi M.A.A., Qureshi A., Khalifa A.O., Agrawal M.K., Shukla S. Growth factors involve in cellular proliferation, differentiation and migration during prostate cancer metastasis. International Journal of Cell Biology. 2019;2(1- 2):1–13.
10. Fernández-Guarino M., Hernández-Bule M.L., Bacci S. Cellular and molecular processes in wound healing. Biomedicines. 2023;11(9):2526–2532. DOI: 10.3390/biomedicines11092526.
11. Yurina N.V., Ageeva T.A., Goryachkin A.M., Varaksin N. Effects of recombinant angiogenin on collagen fiber formation and angiogenesis in the dermis of Wistar rats. Clinical, Cosmetic and Investigational Dermatology. 2021;14:187–196. DOI: 10.2147/CCID.S294825.
12. Sultana M.F., Abo H., Kawashima H. Human and mouse angiogenins: emerging insights and potential opportunities. Frontiers in Microbiology. 2022;13:1022945. DOI: 10.3389/fmicb.2022.1022945.
13. Marzo T., Ferraro G., Cucci L.M., Pratesi A., Hansson Ö., Satriano C. et al. Oxaliplatin inhibits angiogenin proliferative and cell migration effects in prostate cancer cells. Journal of Inorganic Biochemistry. 2021;226:111657. DOI: 10.1016/j.jinorgbio.2021.111657.
14. Naletova I., Cucci L., D’Angeli F., Anfuso C., Magrì A., Mendola D. et al. A tunable nanoplatform of nanogold function alised with angiogenin peptides for anti-angiogenic therapy of brain tumours. Cancers (Basel). 2019;11(9):1322–1350. DOI: 10.3390/cancers11091322.
15. Hoang T.T., Raines R.T. Molecular basis for the autonomous promotion of cell proliferation by angiogenin. Nucleic Acids Research. 2017;45(2):818–831. DOI: 10.1093/nar/gkw1192.
16. Kastberg L.L., Barbera A.R., Jensen M.K., Workman C.T. Burden imposed by heterologous protein production in two major industrial yeast cell factories: identifying sources and mitigation strategies. Frontiers in Fungal Biology. 2022;3:827704. DOI: 10.3389/ffunb.2022.827704.
17. Mastropietro G., Aw R., Polizzi K.M. Expression of proteins in Pichia pastoris. Methods in Enzymology. 2021;660:53–80. DOI: 10.1016/bs.mie.2021.07.004.
18. Пуртов А.А., Мамаев А.Л. Рекомбинантная плазмида для экспрессии в дрожжах Pichia pastoris гена химерного белка ангиогенина человека и штамм дрожжей Pichia pastoris – продуцент рекомбинантного химерного белка ангиогенина человека. Российская Федерация RU 2658758. 2017.10.02 ООО «Лаборатория ангиофарм».
19. Yu D., Cai Y., Zhou W., Sheng J., Xu Z. The Potential of Angiogenin as a Serum Biomarker for Diseases: Systematic Review and Meta-Analysis. Disease Markers. 2018;15(2018): 1984718. DOI: 10.1155/2018/1984718.
20. Garnett E.R., Raines R.T. Emerging biological functions of ribonuclease 1 and angiogenin. Critical Reviews in Biochemistry and Molecular Biology. 2022;57(3):244–260. DOI: 10.1080/10409238.2021.2004577.
21. Mao M., Chen W., Ye D. Research progress on the structure, function, and use of angiogenin in malignant tumours. Heliyon. 2024;10(9):e30654. DOI: 10.1016/j.heliyon.2024.e30654.
22. Stillinovic M., Sarangdhar M.A., Andina N., Tardivel A., Greub F., Bambaci G. et al. Ribonuclease inhibitor and angiogenin system regulates cell type-specific global translation. Science Advances. 2024;10(22):eadl0320. DOI: 10.1126/sciadv.adl0320.
23. Jinghao S., Zhengping X. Three decades of research on angiogenin: a review and perspective. Acta Biochimica et Biophysica Sinica. 2016;48(5):399–410. DOI: 10.1093/abbs/gmv131.
24. Gupta S., Chittoria R.K., Chavan V., Aggarwal A., Reddy L.C., Mohan P.B. et al. Role of burn blister fluid in wound healing. Journal of Cutaneous and Aesthetic Surgery. 2021;14(3):370– 373. DOI: 10.4103/JCAS.JCAS_90_19.
25. Rajala R. How big is the endothelium? Comment on “Spatial and temporal dynamics of the endothelium”. Journal of Thrombosis and Haemostasis. 2021;19(10):2634–2635. DOI: 10.1111/jth.15469.
26. Lyons S.M., Fay M.M., Akiyama Y., Anderson P.J., Ivanov P. RNA biology of angiogenin: Current state and perspectives. RNA Biology. 2017;14(2):171-178. DOI: 10.1080/15476286.2016.1272746.
27. Cucci L.M., Satriano C., Marzo T., La Mendola D. Angiogenin and copper crossing in wound healing. International Journal of Molecular Sciences. 2021;22(19):10704. DOI: 10.3390/ijms221910704.
28. Cong X., Cremer C., Nachreiner T., Barth S., Carloni P. Engineered human angiogenin mutations in the placental ribonuclease inhibitor complex for anticancer therapy: Insights from enhanced sampling simulations. Protein Science. 2016;25(8):1451–1460. DOI: 10.1002/pro.2941.
29. Sarangdhar M.A., Allam R. Angiogenin (ANG)-ribonuclease inhibitor (RNH1) system in protein synthesis and disease. International Journal of Molecular Sciences. 2021;22(3):1287– 1293. DOI: 10.3390/ijms22031287.
30. Janik S., Bekos C., Hacker P., Raunegger T., Schiefer A.I., Müllauer L. et al. Follistatin impacts tumor angiogenesis and outcome in thymic epithelial tumors. Scientific Reports. 2019;9(1):17359. DOI: 10.1038/s41598-019-53671-8.
31. Huang Z., Yu C., Yu L., Shu H., Zhu X. The Roles of FHL3 in Cancer. Frontiers in Oncology. 2022;12:887828. DOI: 10.3389/fonc.2022.887828.
32. Shi P., Xu J., Cui H. The Recent Research Progress of NF-κB signaling on the proliferation, migration, invasion, immune escape and drug resistance of glioblastoma. International Journal of Molecular. 2023;24(12):10337. DOI: 10.3390/ijms241210337.
33. Wang Y.N., Lee H.H., Chou C.K., Yang W.H. Angiogenin/ ribonuclease 5 Is an EGFR ligand and a serum biomarker for erlotinib sensitivity in pancreatic cancer. Cancer Cell. 2018;33(4):752–769.e8. DOI: 10.1016/j.ccell.2018.02.012.
34. Hoang T.T., Johnson D.A., Raines R.T., Johnson J.A. Angiogenin activates the astrocytic Nrf2/antioxidant-response element pathway and thereby protects murine neurons from oxidative stress. The Journal of Biological Chemistry. 2019;294(41):15095–15103. DOI: 10.1074/jbc.RA119.008491.
35. Yeo K.J., Jee J.G., Hwang E., Kim E.H., Jeon Y.H., Cheong H.K. Interaction between human angiogenin and the p53 TAD2 domain and its implication for inhibitor discovery. FEBS Letters. 2017;591(23):3916–3925. DOI: 10.1002/1873-3468.12899.
36. Bultman K., Uebersohn A., Dickson K. Angiogenin interacts with heat shock factor 1. FASEB Journal. 2015;29:sp880.30. DOI: 10.1096/fasebj.29.1_supplement.880.30.
37. Loveland A.B., Koh C.S., Ganesan R., Jacobson A., Korostelev A.A. Structural mechanism of angiogenin activation by the ribosome. Nature. 2024;630(8017):769–776. DOI: 10.1038/s41586-024-07508-8.
38. Su Z., Kuscu C., Malik A., Shibata E., Dutta A. Angiogenin generates specific stress-induced tRNA halves and is not involved in tRF-3-mediated gene silencing. The Journal of Biological Chemistry. 2019;294(45):16930-16941. DOI: 10.1074/jbc.RA119.009272.
39. Rashad S., Niizuma K., Tominaga T. tRNA cleavage: a new insight. Neural Regeneration Research. 2020;15(1):47–52. DOI: 10.4103/1673-5374.264447.
40. Fu M., Gu J., Wang M., Zhang J., Chen Y., Jiang P. et al. Emerging roles of tRNA-derived fragments in cancer. Molecular Cancer. 2023;22(1):30–36. DOI: 10.1186/s12943-023-01739-5.
41. Guzzi N., Bellodi C. Novel insights into the emerging roles of tRNA-derived fragments in mammalian development. RNA Biology. 2020;17(8):1214–1222. DOI: 10.1080/15476286.2020.1732694.
42. Weng C., Dong H., Mao J., Lang X., Chen J. characterization and function of the interaction of angiogenin with alpha-ac tinin 2. Frontiers in Molecular Biosciences. 2022;9:837971. DOI: 10.3389/fmolb.2022.837971.
43. Bharadwaj A.G., Holloway R.W., Miller V.A., Waisman D.M. Plasmin and plasminogen system in the tumor microenvironment: implications for cancer diagnosis, prognosis, and therapy. Cancers (Basel). 2021;13(8):1838–1845. DOI: 10.3390/ cancers13081838.
44. Kushwaha A., Goswami L., Kim B.S. Nanomaterial-based therapy for wound healing. Nanomaterials (Basel). 2022;12(4):618–630. DOI: 10.3390/nano12040618.
45. Veith A.P., Henderson K., Spencer A., Sligar A.D., Baker A.B. Therapeutic strategies for enhancing angiogenesis in wound healing. Advanced Drug Delivery Reviews. 2019;146:97–125. DOI: 10.1016/j.addr.2018.09.010.
46. Weng C., Dong H., Bai R., Sheng J., Chen G., Ding K. et al. Angiogenin promotes angiogenesis via the endonucleolytic decay of miR-141 in colorectal cancer. Molecular Therapy. Nucleic Acids. 2022;27:1010–1022. DOI: 10.1016/j.omtn.2022.01.017.
47. Yang H., Yuan L., Ibaragi S., Li S., Shapiro R., Vanli N. et al. Angiogenin and plexin-B2 axis promotes glioblastoma progression by enhancing invasion, vascular association, proliferation and survival. British Journal of Cancer. 2022;127(3):422–435. DOI: 10.1038/s41416-022-01814-6.
48. Mao M., Chen W., Ye D. Research progress on the structure, function, and use of angiogenin in malignant tumours. Heliyon. 2024;10(9):e30654. DOI: 10.1016/j.heliyon.2024.e30654.
49. Manuelli V., Pecorari C., Filomeni G., Zito E. Regulation of redox signaling in HIF-1-dependent tumor angiogenesis. The FEBS Journal. 2022;289(18):5413–5425. DOI: 10.1111/febs.16110.
50. Marei H.E., Althani A., Afifi N., Hasan A., Caceci T., Cifola I. et al. Glioma extracellular vesicles for precision medicine: prognostic and theragnostic application. Discover Oncology. 2022;13(1):49. DOI: 10.1007/s12672-022-00514-0.
51. Bárcena C., Stefanovic M., Tutusaus A., Martinez-Nieto G.A., Martinez L., García-Ruiz C. et al. Angiogenin secretion from hepatoma cells activates hepatic stellate cells to amplify a self-sustained cycle promoting liver cancer. Scientific Reports. 2015;5:7916. DOI: 10.1038/srep07916.
52. González L.O., Eiro N., Fraile M., Beridze N., Escaf A.R., Escaf S. et al. Prostate cancer tumor stroma: responsibility in tumor biology, diagnosis and treatment. Cancers (Basel). 2022;14(18):4412. DOI: 10.3390/cancers14184412.
53. Xu L., Yan Y., Xue X., Li C.G., Xu Z.Y., Chen H.Z. Angiogenin elevates the invasive potential of squamous cell lung carcinoma cells through epithelial-mesenchymal transition. Oncology Reports. 2016;36(5):2836–2842. DOI: 10.3892/or.2016.5107.
54. Li S., Shi X., Chen M., Xu N. Angiogenin promotes colorectal cancer metastasis via tiRNA production. International Journal of Cancer. 2019;145(5):1395–1407. DOI: 10.1002/ijc.32245.
55. Duran C.L., Borriello L., Karagiannis G.S., Entenberg D., Oktay M.H., Condeelis J.S. Targeting Tie2 in the tumor microenvironment: from angiogenesis to dissemination. Cancers (Basel). 2021;13(22):5730. DOI: 10.3390/cancers13225730.
56. Li Y., Qu X., Cao B., Yang T., Bao Q., Yue H. et al. Selectively suppressing tumor angiogenesis for targeted breast cancer therapy by genetically engineered phage. Advanced Materials (Deerfield Beach, Fla.). 2020;32(29):e2001260. DOI: 10.1002/adma.202001260.
57. Rani V., Prabhu A. Combining angiogenesis inhibitors with radiation: advances and challenges in cancer treatment. Current Pharmaceutical Design. 2021;27(7):919–931. DOI: 10.2 174/1381612826666201002145454.
58. Li D., Weng S., Zhong C., Xu D., Yuan Y. Risk of second primary cancers among long-term survivors of breast cancer. Frontiers in Oncology. 2019;9:1426–1435. DOI:10.3389/fonc.2019.01426.
59. Procaccio L., Damuzzo V., Di Sarra F., Russi A., Todino F., Dadduzio, V. et al. Safety and tolerability of anti-angiogenic protein kinase inhibitors and vascular-disrupting agents in cancer: focus on gastrointestinal malignancies. Drug Safety. 2019;42(2):159–179. DOI: 10.1007/s40264-018-0776-6.
60. Guo S., Liang Y., Liu L., Chen Q., Wen Y., Liu S. et al. Increased angiogenin expression correlates with radiation resistance and predicts poor survival for patients with nasopharyngeal carcinoma. Frontiers in Pharmacology. 2021;12:627935. DOI: 10.3389/fphar.2021.627935.
61. Wang Y.N., Lee H.H., Chou C.K., Yang W.H., Wei Y., Chen C.T. et al. Angiogenin/ribonuclease 5 is an EGFR ligand and a serum biomarker for erlotinib sensitivity in pancreatic cancer. Cancer Cell. 2018;33(4):752–769. DOI: 10.1016/j.ccell.2018.02.012.
Рецензия
Для цитирования:
Михалев Д.Е., Коротенко С.Н., Ломовских А.Ю., Байдик О.Д. Ангиогенин: биологическая роль, механизмы действия и участие в онкогенезе. Бюллетень сибирской медицины. 2024;23(4):169-176. https://doi.org/10.20538/1682-0363-2024-4-169-176
For citation:
Mikhalev D.E., Korotenko S.N., Lomovskikh A.Yu., Baydik O.D. Angiogenin: biological role, mechanisms of action, and participation in oncogenesis. Bulletin of Siberian Medicine. 2024;23(4):169-176. https://doi.org/10.20538/1682-0363-2024-4-169-176