Preview

Bulletin of Siberian Medicine

Advanced search

Association of single nucleotide variants of the SLCO1B1 gene with the Gilbert syndrome phenotype

https://doi.org/10.20538/1682-0363-2025-1-29-35

Abstract

The aim of the study is to investigate the association of rs2306283 and rs4149056 variants of the SLCO1B1 gene with benign unconjugated hyperbilirubinemia.
Materials and methods. A case-control study design was employed. The group with the Gilbert syndrome (GS) phenotype comprised 414 individuals (mean age 36.7 ± 15.9 years, 49.8% men). The control group consisted of 429 individuals (mean age 38.5 ± 14.3 years, 52.2% men) randomly selected from DNA banks of MONICA project participants, young adults aged 25–44 years, and participants in a cross-sectional study of schoolchildren in Novosibirsk. Genotyping of the groups for nucleotide sequence variants rs2306283 and rs4149056 of the SLCO1B1 gene was performed using real-time polymerase chain reaction.
Results. No statistically significant differences were found between the GS and control groups regarding the frequencies of genotypes and alleles of rs2306283 (p > 0.05). Carriers of the TT rs4149056 genotype were less common (OR = 0.67, 95% CI 0.51–0.89, p = 0.005), while carriers of the TC genotype were more prevalent (OR = 1.46, 95% CI 1.1–1,94, p = 0.009) in the GS group compared to the control group. The frequency of the C allele rs4149056 was higher in the GS group compared to the control group (OR = 1.35, 95% CI 1.07–1.7, p = 0.012). These differences persisted for carriers of the 6TA/7TA genotype but not for the 6TA/6TA and 7TA/7TA genotypes rs3064744 of the UGT1A gene.
Conclusion. The single nucleotide variant rs2306283 of the SLCO1B1 gene is not associated with benign unconjugated hyperbilirubinemia. The TC genotype and C allele of the single nucleotide variant rs4149056 of the SLCO1B1 gene are the genotype and risk allele of Gilbert syndrome, while the TT variant genotype exhibits a protective effect against the development of the syndrome, particularly for carriers of the 6TA/7TA genotype rs3064744 of the UGT1A gene.

About the Authors

A. A. Ivanova
Research Institutе of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

175/1, B.Bogatkova Str., Novosibirsk, 630089


Competing Interests:

The authors declare no obvious or potential conflicts of interest related to the publication of this article.



N. E. Apartseva
Research Institutе of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

175/1, B.Bogatkova Str., Novosibirsk, 630089


Competing Interests:

The authors declare no obvious or potential conflicts of interest related to the publication of this article.



A. P. Kashirina
Research Institutе of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

175/1, B.Bogatkova Str., Novosibirsk, 630089


Competing Interests:

The authors declare no obvious or potential conflicts of interest related to the publication of this article.



E. G. Nemtsova
North-Western State Medical University named after I.I. Mechnikov
Russian Federation

41, Kirochnaya Str., Saint Petersburg, 191015


Competing Interests:

The authors declare no obvious or potential conflicts of interest related to the publication of this article.



Yu. V. Ivanova
Research Institutе of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

175/1, B.Bogatkova Str., Novosibirsk, 630089


Competing Interests:

The authors declare no obvious or potential conflicts of interest related to the publication of this article.



M. V. Kruchinina
Research Institutе of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

175/1, B.Bogatkova Str., Novosibirsk, 630089


Competing Interests:

The authors declare no obvious or potential conflicts of interest related to the publication of this article.



S. A. Kurilovich
Research Institutе of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

175/1, B.Bogatkova Str., Novosibirsk, 630089


Competing Interests:

The authors declare no obvious or potential conflicts of interest related to the publication of this article.



V. N. Maksimov
Research Institutе of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

175/1, B.Bogatkova Str., Novosibirsk, 630089


Competing Interests:

The authors declare no obvious or potential conflicts of interest related to the publication of this article.



References

1. King D., Armstrong M.J. Overview of Gilbert’s syndrome. Drug Ther. Bull. 2019;57(2):27–31. DOI: 10.1136/dtb.2018.000028.

2. Bielinski S.J., Chai H.S., Pathak J., Talwalkar J.A., Limburg P.J., Gullerud R.E. et al. Mayo Genome Consortia: a genotype-phenotype resource for genome-wide association studies with an application to the analysis of circulating bilirubin levels. Mayo Clin. Proc. 2011;86(7):606–614. DOI: 10.4065/mcp.2011.0178.

3. Johnson A.D., Kavousi M., Smith A.V., Chen M.H., Dehghan A., Aspelund T. et al. Genome-wide association meta-analysis for total serum bilirubin levels. Hum. Mol. Genet. 2009;18(14):2700–2710. DOI: 10.1093/hmg/ddp202.

4. dbGene SLCO1B1 solute carrier organic anion transporter family member 1B1. URL: https://www.ncbi.nlm.nih.gov/gene/10599

5. Peng K.W., Bacon J., Zheng M., Guo Y., Wang M.Z. Ethnic variability in the expression of hepatic drug transporters: absolute quantification by an optimized targeted quantitative proteomic approach. Drug Metab. Dispos. 2015;43(7):1045–1055. DOI: 10.1124/dmd.115.063362.

6. Saber-Ayad M., Manzoor S., El-Serafi A., Mahmoud I., Abusnana S., Sulaiman N. Statin-induced myopathy SLCO1B1 521T > C is associated with prediabetes, high body mass index and normal lipid profile in Emirati population. Diabetes Res. Clin. Pract. 2018;139:272–277. DOI: 10.1016/j.diabres.2018.03.014.

7. Liu J.E., Liu X.Y., Chen S., Zhang Y., Cai L.Y., Yang M. et al. SLCO1B1 521T > C polymorphism associated with rosuvastatin-induced myotoxicity in Chinese coronary artery disease patients: a nested case-control study. Eur. J. Clin. Pharmacol. 2017;73(11):1409–1416. DOI: 10.1007/s00228-017-2318-z.

8. Choi H.Y., Bae K.S., Cho S.H., Ghim J.L., Choe S., Jung J.A. et al. Impact of CYP2D6, CYP3A5, CYP2C19, CYP2A6, SLCO1B1, ABCB1, and ABCG2 gene polymorphisms on the pharmacokinetics of simvastatin and simvastatin acid. Pharmacogenet. Genomics. 2015;25(12):595–608. DOI: 10.1097/FPC.0000000000000176.

9. Bins S., Lenting A., El Bouazzaoui S., van Doorn L., Oomende Hoop E., Eskens F.A. et al. Polymorphisms in SLCO1B1 and UGT1A1 are associated with sorafenib-induced toxicity. Pharmacogenomics. 2016;17(14):1483–1490. DOI: 10.2217/pgs-2016-0063.

10. Mei Y., Wang S.Y., Li Y., Yi S.Q., Wang C.Y., Yang M. et al. Role of SLCO1B1, ABCB1, and CHRNA1 gene polymorphisms on the efficacy of rocuronium in Chinese patients. J. Clin. Pharmacol. 2015;55(3):261–268. DOI: 10.1002/jcph.405.

11. Li W., Liu W., Wang X., Dou R., Zhu Z. SLCO1B1 polymorphisms are associated with the susceptibility to pulmonary tuberculosis in Chinese females. Biochem. Genet. 2024;62(1):385–394. DOI: 10.1007/s10528-023-10392-y.

12. Lin F., Xu J.X., Wu Y.H., Chen Z.K., Chen M.T., Ma Y.B. et al. Red blood cell membrane-related gene variants and clinical risk factors in Chinese neonates with hyperbilirubinemia. Neonatology. 2023;120(3):371–380. DOI: 10.1159/000529783.

13. Niemi M., Pasanen M.K., Neuvonen P.J. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol. Rev. 2011;63(1):157–181. DOI: 10.1124/pr.110.002857.

14. Brunham L.R., Lansberg P.J., Zhang L., Miao F., Carter C., Hovingh G.K. et al. Differential effect of the rs4149056 variant in SLCO1B1 on myopathy associated with simvastatin and atorvastatin. Pharmacogenomics J. 2012;12(3):233–237. DOI: 10.1038/tpj.2010.92.

15. Linskey D.W., English J.D., Perry D.A., Ochs-Balcom H.M., Ma C., Isackson P.J. et al. Association of SLCO1B1 c.521T>C (rs4149056) with discontinuation of atorvastatin due to statin-associated muscle symptoms. Pharmacogenet. Genomics. 2020;30(9):208–211. DOI: 10.1097/FPC.0000000000000412.

16. Hoa P.Q., Kim H.K., Jang T.W., Seo H., Oh J.Y., Kim H.C. et al. Population pharmacokinetic model of rifampicin for personalized tuberculosis pharmacotherapy: effects of SLCO1B1 polymorphisms on drug exposure. Int. J. Antimicrob. Agents. 2024;63(2):107034. DOI: 10.1016/j.ijantimicag.2023.107034.

17. Han J.M., Jang E.J., Yee J., Song T.J., Kim D.H., Park J. et al. Association between SLCO1B1 genetic polymorphisms and bleeding risk in patients treated with edoxaban. Sci. Rep. 2023;13(1):15967. DOI: 10.1038/s41598-023-43179-7.

18. Dragović G., Dimitrijević B., Kušić J., Soldatović I., Jevtović D., Olagunju A. et al. Influence of SLCO1B1 polymorphisms on lopinavir Ctrough in Serbian HIV/AIDS patients. Br. J. Clin. Pharmacol. 2020;86(7):1289–1295. DOI: 10.1111/bcp.14230.

19. Liutkeviciene R., Vilkeviciute A., Slavinskaite A., Petrauskaite A., Tatarunas V., Kriauciuniene L. Evaluation of serum SLCO1B1 levels and genetic variants of SLCO1B1 rs4149056 and rs2306283 in patients with early and exudative age-related macular degeneration. Gene. 2018;676:139–145. DOI: 10.1016/j.gene.2018.07.031.

20. Méndez L., Lagoa M., Quiroga T., Margozzini P., Azócar L., Molina H.R. et al. Prevalencia de síndrome de Gilbert y sus determinantes genéticas en población chilena [Prevalence of Gilbert syndrome and its genetic determinants in Chile]. Rev. Med. Chil. 2013;141(10):1266–1274. Spanish. DOI: 10.4067/S0034-98872013001000005.

21. D’Silva S., Colah R.B., Ghosh K., Mukherjee M.B. Combined effects of the UGT1A1 and OATP2 gene polymorphisms as major risk factor for unconjugated hyperbilirubinemia in Indian neonates. Gene. 2014;547(1):18–22. DOI: 10.1016/j.gene.2014.05.047.

22. Li Y., Wu T., Chen L., Zhu Y. Associations between G6PD, OATP1B1 and BLVRA variants and susceptibility to neonatal hyperbilirubinaemia in a Chinese Han population. J. Paediatr. Child Health. 2019;55(9):1077–1083. DOI: 10.1111/jpc.14346.


Review

For citations:


Ivanova A.A., Apartseva N.E., Kashirina A.P., Nemtsova E.G., Ivanova Yu.V., Kruchinina M.V., Kurilovich S.A., Maksimov V.N. Association of single nucleotide variants of the SLCO1B1 gene with the Gilbert syndrome phenotype. Bulletin of Siberian Medicine. 2025;24(1):29-35. https://doi.org/10.20538/1682-0363-2025-1-29-35

Views: 185


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)