Interleukin-4 and interferon gamma in bronchial remodeling in asthma patients with cold airway hyperresponsiveness
https://doi.org/10.20538/1682-0363-2025-1-60-68
Abstract
Interleukin-4 (IL-4) and interferon gamma (IFNγ) are key participants in the polarization of the immune response toward Th1 or Th2 types in bronchial asthma. However, their role in bronchial remodeling in patients with asthma and cold airway hyperresponsiveness (CAHR) remains unclear.
Aim. To study the involvement of IL-4 and IFNγ in the disorganization of bronchial epithelium and the regulation of airway remodeling in asthma with CAHR.
Materials and methods. A total of 47 patients with mild persistent asthma were examined. Induced sputum collection, blood sampling for biochemical studies, spirometry, and the isocapnic hyperventilation test with cold (-20 °C) air (IHCA) were performed. The sputum was analyzed for cellular composition (in %), and the cytokine profile (IL-4 and IFNγ in pg / ml) was evaluated in peripheral blood.
Results. The patients were divided into groups with CAHR (group 1, 17 patients) and without cold-induced bronchoconstriction (group 2, 30 patients). Forced expiratory volume in 1 sec. (FEV1 ) and maximal mid-expiratory flow (MMEF) in group 1 were lower compared to group 2: 84.0[83.0; 93.0]% and 99.0 [85.0; 105.0]% (p = 0.012); 55.0[51.0;67.0]% and 76.0[59.0;88.0]% (p = 0.021), respectively. The blood content of IL-4 and IFNγ in group 1 was 11.48[10.82;22.48] pg / ml and 26.98[17.24; 73.5] pg / ml, while in group 2, it was 1.88 [0.66; 5.96] (p = 0.003) and 7.24[1.5; 26.98] pg / ml (p = 0.047), respectively. In group 1, an association was found between blood IL-4 and IFNγ levels (Rs = 0.65; p = 0.016), between FEV1 and the number of epithelial cells in sputum (Rs = –0.74; p = 0.0003), and between IL-4 and airway response (ΔFEV1 /Vital Capacity) after the IHCA (Rs = –0.70; p = 0.007).
Conclusion. The escalation of the proinflammatory and pro-oxidant function of IFNγ indicates a shift from Th2 immune response activation, regulated by IL-4, toward a Th1 response, which stimulates bronchial remodeling in patients with asthma and CAHR.
About the Authors
A. B. PirogovRussian Federation
22, Kalinina Str., Blagoveshchensk, 675000
Competing Interests:
The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article.
A. G. Prikhodko
Russian Federation
22, Kalinina Str., Blagoveshchensk, 675000
Competing Interests:
The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article.
N. A. Pirogova
Russian Federation
22, Kalinina Str., Blagoveshchensk, 675000
Competing Interests:
The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article.
D. A. Gassan
Russian Federation
22, Kalinina Str., Blagoveshchensk, 675000
Competing Interests:
The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article.
D. E. Naumov
Russian Federation
22, Kalinina Str., Blagoveshchensk, 675000
Competing Interests:
The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article.
J. M. Perelman
Russian Federation
22, Kalinina Str., Blagoveshchensk, 675000
Competing Interests:
The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article.
References
1. Russell R.J., Boulet L.-P., Brightling C.E., Pavord I.D., Porsbjerg C., Dorscheid D. et al. The airway epithelium: an orchestrator of inflammation, a key structural barrier and a therapeutic target in severe asthma. Eur. Respir. J. 2024;63(4):2301397. DOI: 10.1183/13993003.01397-2023.
2. Heijink I.H., Kuchibhotla V.N.S., Roffel M.P., Maes T., Knight D.A., Sayers I. et al. Epithelial cell dysfunction, a major driver of asthma development. J. Allergy Clin. Immunol. 2020;75(8):1902–1917. DOI: 10.1111/all.14421.
3. Savin I.A., Zenkova M.A., Sen’kova A.V. Bronchial asthma, airway remodeling and lung fibrosis as successive steps of one process. Int. J. Mol. Sci. 2023;24(22):16042. DOI: 10.3390/ijms242216042.
4. Varricchi G., Brightling C.E., Grainge C., Lambrecht B.N., Chanez P. Airway remodelling in asthma and the epithelium: on the edge of a new era. Eur. Respir. J. 2024;63(4):2301619. DOI: 10.1183/13993003.01619-2023.
5. Murphy R.C., Lai Y., Liu M., Al-Shaikhly T., Altman M.C., Altemeier W.A. et al. Distinct epithelial-innate immune cell transcriptional circuits underlie airway hyperresponsiveness in asthma. Am. J. Respir. Crit. Care Med. 2023;207(12):1565–1575. DOI: 10.1164/rccm.202209-1707OC.
6. Frey A., Lunding L.P., Ehlers J.C., Weckmann M., Zissler U.M., Wegmann M. More than just a barrier: The immune functions of the airway epithelium in asthma pathogenesis. Front. Immunol. 2020;11:761. DOI: 10.3389/fimmu.2020.00761.
7. Пирогов А.Б., Приходько А.Г., Пирогова Н.А., Перельман Ю.М. Клинические и патогенетические аспекты нейтрофильного воспаления бронхов у больных бронхиальной астмой с холодовой гиперреактивностью дыхательных путей (обзор литературы). Бюллетень сибирской медицины. 2023;22(1):143–152. DOI: 10.20538/1682-0363-2023-1-143-152.
8. Schroder K., Hertzog P.J., Ravasi T., Hume D.A. Interferon-gamma: an overview of signals, mechanisms and functions. J. Leuk. Biol. 2004;75(2):163–189. DOI: 10.1189/jlb.0603252.
9. Ray A., Raundhal M., Oriss T.B., Ray P., Wenzel S.E. Current concepts of severe asthma. J. Clin. Invest. 2016;126(7):2394–2403. DOI: 10.1172/JCI84144.
10. Луцкий А.А., Жирков А.А, Лобзин Д.Ю., Рао М., Алексеева Л.А., Мейрер М. и др. Интерферон-γ: биологическая функция и значение для диагностики клеточного иммунного ответа. Журнал инфектологии. 2015;7(4):10–22. DOI: 10.22625/2072-6732-2015-7-4-10-22.
11. Junttila I.S. Tuning the cytokine responses: An update on interleukin (IL)-4 and IL-13 receptor complexes. Front. Immunol. 2018;9:888. DOI: 10.3389/fimmu.2018.00888.
12. Global Initiative for Asthma (GINA). Global strategy for asthma management and prevention (2023 update). Accessed August 07, 2023. URL: https://ginasthma.org/wp-content/uploads/2023/07/GINA-2023-Full-report23_07_06-WMS.pdf
13. Медицинские лабораторные технологии: руководство по клинической лабораторной диагностике; под ред. А.И. Карпищенко. 3-е изд., перераб. и доп. М.: ГЭОТАРМедиа, 2012:472.
14. Приходько А.Г., Перельман Ю.М., Колосов В.П. Гиперреактивность дыхательных путей. Владивосток: Дальнаука, 2011:204.
15. Hellings P.W., Steelant B. Epithelial barriers in allergy and asthma. J. Allergy Clin. Immunol. 2020;145(6):1499–1509. DOI: 10.1016/j.jaci.2020.04.010.
16. Li M., Li Q., Yang G., Kolosov V.P., Perelman J.M., Zhou X.D. Cold temperature induces mucin hypersecretion from normal human bronchial epithelial cells in vitro through a transient receptor potential melastatin 8 (TRPM8)-mediated mechanism. J. Allergy Clin. Immunol. 2011;128(3):626–634. DOI: 10.1016/j.jaci.2011.04.032.
17. Пирогов А.Б., Приходько А.Г., Перельман Ю.М., Зиновьев С.В., Чжоу С.Д., Ли Ц. Изменения бокаловидного эпителия в ответ на холодовую бронхопровокацию у больных бронхиальной астмой с холодовой гиперреактивностью дыхательных путей. Бюллетень физиологии и патологии дыхания. 2018;(68):8–16. DOI: 10.12737.article_5b188b4bad3200.10559927.
18. Целуйко С.С. Ультраструктурная организация мукоцилиарного клиренса в норме и при холодовом воздействии. Бюллетень физиологии и патологии дыхания. 2009;(33): 7–12.
19. Bahman S., Rezaee F., Desando S., Emo J., Chapman T., Knowlden S. et al. Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells. Tissue Barriers. 2013;1(2):e24333. DOI: 10.4161/tisb.24333.
20. Zhang X., Xu Z., Wen X., Huang G., Nian S., Li L. et al. The onset, development and pathogenesis of severe neutrophilic asthma. Immunol. Cell Biol. 2022;100(3):144–159. DOI: 10.1111/imcb.12522.
21. Thind M.K., Uhlig H.H., Glogauer M., Palaniyar N., Bourdon C., Gwela A. et al. A metabolic perspective of the neutrophil life cycle: new avenues in immunometabolism. Front. Immunol. 2024:14:1334205. DOI: 10.3389/fimmu.2023.1334205.
22. Žaloudíková M. Mechanisms and effects of macrophage polarization and its specifics in pulmonary environment. Physiol. Res. 2023;72(Suppl. 2):S137–S156. DOI: 10.33549/physiolres.935058.
23. Li M., Wang M., Wen Y., Zhang H., Zhao G.-N., Gao Q. Signaling pathways in macrophages: molecular mechanisms and therapeutic targets. MedComm. 2023;4(5):e349. DOI: 10.1002/mco2.349.
24. Arora S., Dev K., Agarwal B., Das P., Ali Syed M. Macrophages: Their role, activation and polarization in pulmonary diseases. Immunobiology. 2018;223(4):383–396. DOI: 10.1016/j.imbio.2017.11.001.
Review
For citations:
Pirogov A.B., Prikhodko A.G., Pirogova N.A., Gassan D.A., Naumov D.E., Perelman J.M. Interleukin-4 and interferon gamma in bronchial remodeling in asthma patients with cold airway hyperresponsiveness. Bulletin of Siberian Medicine. 2025;24(1):60-68. https://doi.org/10.20538/1682-0363-2025-1-60-68