Study of gut microbiota in cholangiocarcinoma patients
https://doi.org/10.20538/1682-0363-2025-1-105-113
Abstract
Aim. To analyze the taxonomic composition of the intestinal microbiota in patients with cholangiocarcinoma (CCA) and compare it to individuals without oncopathology.
Materials and methods. The study included patients with histologically verified cholangiocarcinoma (n = 30) and a control group (n = 27). An integrated approach was used, including clinical and anamnestic, laboratory, and instrumental methods. The intestinal microbiota was studied through amplicon sequencing of the bacterial 16S rRNA gene.
Results. The assessment of alpha- and beta-diversity of the microbiota in patients with CCA did not show any significant differences compared to the control group. However, a comparative analysis revealed changes in the representation of a number of microorganisms at different taxonomic levels, including a higher content of Bacteroides and Lachnospiraceae_NK4A136_group in patients with CCA. Additionally, bacteria that influence the change in the global balance of microorganisms were identified in both groups, such as [Ruminococcus]_torques_group, Subdoligranulum, Parasutterella, unclassified Firmicutes in samples of patients with CCA and Oscillospiraceae and Erysipelotrichaceae UCG-006 in the control group.
Conclusion. The study found a number of significant differences in bacterial representation between patients with cholangiocarcinoma and control group participants. Further research on the intestinal microbiota has the potential to develop non-invasive tools for early diagnosis of CCA.
Keywords
About the Authors
O. S. FedorovaRussian Federation
2, Moscow Trakt, Tomsk, 634050
Competing Interests:
The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article.
A. Е. Kovshirina
Russian Federation
2, Moscow Trakt, Tomsk, 634050
Competing Interests:
The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article.
T. S. Sokolova
Russian Federation
2, Moscow Trakt, Tomsk, 634050
Competing Interests:
The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article.
V. V. Kulenich
Russian Federation
2, Moscow Trakt, Tomsk, 634050
Competing Interests:
The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article.
L. M. Ogorodova
Russian Federation
2, Moscow Trakt, Tomsk, 634050
Competing Interests:
The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article.
References
1. Banales J.M., Cardinale V., Carpino G., Marzioni M., Andersen J.B., Invernizzi P. et al. Expert consensus document: Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat. Rev. Gastroenterol. Hepatol. 2016;13(5):261–280. DOI: 10.1038/nrgastro.2016.51
2. WHO’s Global Health Estimates: Life expectancy and leading causes of death and disability. 2020. URL: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates
3. Fedorova O.S., Kovshirina Y.V., Kovshirina A.E., Fedotova M.M., Deev I.A., Petrovskiy F.I. et al. Opisthorchis felineus infection and cholangiocarcinoma in the Russian Federation: A review of medical statistics. Parasitol. Int. 2017;66(4):365–371. DOI: 10.1016/j.parint.2016.07.010.
4. Palmer W.C., Patel T. Are common factors involved in the pathogenesis of primary liver cancers? A meta-analysis of risk factors for intrahepatic cholangiocarcinoma. J. Hepatol. 2012;57(1):69–76. DOI: 10.1016/j.jhep.2012.02.022.
5. Uddin M.H., Li S., Jin Y., Choi M.H., Jang J.J., Hong S.T. C3H/He mice as an incompatible cholangiocarcinoma model by clonorchis sinensis, Dicyclanil and N-Nitrosodimethylamine. Korean J. Parasitol. 2016;54(3):281–289. DOI: 10.3347/kjp.2016.54.3.281.
6. Woo H., Han J.K., Kim J.H., Hong S.T., Uddin M.H., Jang J.J. In vivo monitoring of development of cholangiocarcinoma induced with C. sinensis and N-nitrosodimethylamine in Syrian golen hamsters using ultrasonography and magnetic resonance imaging: a preliminary study. Eur. Radiol. 2017;27(4):1740–1747. DOI: 10.1007/s00330-016-4510-4.
7. Meng C., Bai C., Brown T.D., Hood L.E., Tian Q. Human gut microbiota and gastrointestinal cancer. Genomics Proteomics Bioinformatics. 2018;16(1):33–49. DOI: 10.1016/j.gpb.2017.06.002.
8. Adolph T.E., Grander C., Moschen A.R., Tilg H. Liver-microbiome axis in health and disease. Trends Immunol. 2018;39(9):712–723. DOI: 10.1016/j.it.2018.05.002.
9. Tang R., Wei Y., Li Y., Chen W., Chen H., Wang Q. et al. Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy. Gut. 2018;67(3):534–541. DOI: 10.1136/gutjnl-2016-313332.
10. Ni J., Huang R., Zhou H., Xu X., Li Y., Cao P. et al. Analysis of the relationship between the degree of dysbiosis in gut microbiota and prognosis at different stages of primary hepatocellular carcinoma. Front. Microbiol. 2019;10:1458. DOI: 10.3389/fmicb.2019.01458.
11. Imhann F., Vich Vila A., Bonder M.J., Fu J., Gevers D., Visschedijk M.C. et al. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut. 2018;67(1):108–119. DOI: 10.1136/gutjnl-2016-312135.
12. Sripa B., Deenonpoe R., Brindley P.J. Co-infections with liver fluke and Helicobacter species: A paradigm change in pathogenesis of opisthorchiasis and cholangiocarcinoma? Parasitol. Int. 2017;66(4):383–389. DOI: 10.1016/j.parint.2016.11.016.
13. Chng K.R., Chan S.H., Ng A.H.Q., Li C., Jusakul A., Bertrand D. et al. Tissue microbiome profiling identifies an enrichment of specific enteric bacteria in Opisthorchis viverrini associated cholangiocarcinoma. EBio Medicine. 2016;8:195–202. DOI: 10.1016/j.ebiom.2016.04.034.
14. Sripa B., Bethony J.M., Sithithaworn P., Kaewkes S., Mairiang E., Loukas A. et al. Opisthorchiasis and opisthorchis-associated cholangiocarcinoma in Thailand and Laos. Acta Trop. 2011;120:S158–S168. DOI: 10.1016/j.actatropica.2010.07.006.
15. Deng T., Li J., He B., Chen B., Liu F., Chen Z. et al. Gut microbiome alteration as a diagnostic tool and associated with inflammatory response marker in primary liver cancer. Hepatol. Int. 2022;16(1):99–111. DOI: 10.1007/s12072-021-10279-3.
16. Zhang T., Zhang S., Jin C., Lin Z., Deng T., Xie X. et al. A Predictive model based on the gut microbiota improves the diagnostic effect in patients with cholangiocarcinoma. Front. Cell Infect. Microbiol. 2021;11:751795. DOI: 10.3389/fcimb.2021.751795.
17. Zafar H., Saier M.H. Jr. Gut bacteroides species in health and disease. Gut Microbes. 2021;13(1):1–20. DOI: 10.1080/19490976.2020.1848158.
18. Bartolini I., Risaliti M., Ringressi M.N., Melli F., Nannini G., Amedei A. et al. Role of gut microbiota-immunity axis in patients undergoing surgery for colorectal cancer: Focus on short and long-term outcomes. World J. Gastroenterol. 2020;26(20):2498–2513. DOI: 10.3748/wjg.v26.i20.2498.
19. Mármol I., Sánchez-de-Diego C., Pradilla Dieste A., Cerrada E., Rodriguez Yoldi M.J. Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int. J. Mol. Sci. 2017;18(1):197. DOI: 10.3390/ijms18010197.
20. Ren Z., Li A., Jiang J., Zhou L., Yu Z., Lu H. et al. Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut. 2019;68(6):1014–1023. DOI: 10.1136/gutjnl-2017-315084.
21. Dapito D.H., Mencin A., Gwak G.Y., Pradere J.P., Jang M.K., Mederacke I. et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell. 2012;21(4):504–516. DOI: 10.1016/j.ccr.2012.02.007.
22. Darnaud M., Faivre J., Moniaux N. Targeting gut flora to prevent progression of hepatocellular carcinoma. J. Hepatol. 2013;58(2):385–387. DOI: 10.1016/j.jhep.2012.08.019.
23. Nolan J.P. The role of intestinal endotoxin in liver injury: a long and evolving history. Hepatology. 2010;52(5):1829–1835. DOI: 10.1002/hep.23917.
24. Lederer A.K., Rasel H., Kohnert E., Kreutz C., Huber R., Badr M.T. et al. Gut Microbiota in Diagnosis, Therapy and Prognosis of Cholangiocarcinoma and Gallbladder Carcinoma-A Scoping Review. Microorganisms. 2023;11(9):2363. DOI: 10.3390/microorganisms11092363.
25. Huang J.H., Wang J., Chai X.Q., Li Z.C., Jiang Y.H., Li J. et al. The Intratumoral bacterial metataxonomic signature of hepatocellular carcinoma. Microbiol. Spectr. 2022;10(5):e0098322. DOI: 10.1128/spectrum.00983-22.
26. Bajaj J.S., Hylemon P.B., Ridlon J.M., Heuman D.M., Daita K., White M.B. et al. Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 2012;303(6):G675–G685. DOI: 10.1152/ajpgi.00152.2012.
27. Qin N., Yang F., Li A., Prifti E., Chen Y., Shao L. et al. Alterations of the human gut microbiome in liver cirrhosis. Nature. 2014;513(7516):59–64. DOI: 10.1038/nature13568.
28. Louis S., Tappu R.M., Damms-Machado A., Huson D.H., Bischoff S.C. Characterization of the gut microbial community of qbese patients following a weight-loss intervention using whole metagenome shotgun sequencing. PLoS One. 2016;11(2):e0149564. DOI: 10.1371/journal.pone.0149564.
29. Ju T., Kong J.Y., Stothard P., Willing B.P. Defining the role of Parasutterella, a previously uncharacterized member of the core gut microbiota. ISME. J. 2019;13:1520–1534. DOI: 10.1038/s41396-019-0364-5.
Review
For citations:
Fedorova O.S., Kovshirina A.Е., Sokolova T.S., Kulenich V.V., Ogorodova L.M. Study of gut microbiota in cholangiocarcinoma patients. Bulletin of Siberian Medicine. 2025;24(1):105-113. https://doi.org/10.20538/1682-0363-2025-1-105-113