Preview

Bulletin of Siberian Medicine

Advanced search

Study of the spectrum of unsaturated fatty acids in the blood of men with diabetes mellitus in Novosibirsk (ESSE-RF3 in the Novosibirsk region)

https://doi.org/10.20538/1682-0363-2025-1-124-133

Abstract

Aim. To study the content of unsaturated fatty acids (FAs) in blood plasma in men from Novosibirsk (ESSERF3 in the Novosibirsk region) with established type 2 diabetes mellitus (DM2), newly diagnosed diabetes, and prediabetes, as well as to evaluate the associations of various types of FAs with the presence or absence of diabetes and fasting glucose levels.
Materials and methods. Within the framework of the multicenter, single-stage epidemiological ESSE-RF3 study in the Novosibirsk region, 1 200 residents of Novosibirsk (600 men, 600 women) aged 35–74 years were examined. The present study included 563 men with an average age of 54.4 ± 11.48 years, comprising: 61 individuals diagnosed with DM2 based on anamnestic data (Group I); 65 men with newly diagnosed diabetes (Group II); 46 men with conditional prediabetes (Group III); and 391 men without diabetes – (Group IV). The levels of unsaturated FAs in blood plasma were determined via high-performance liquid chromatography.
Results. An increase in omega-3, -6, and -9 FA levels was revealed in Group I compared to Group IV. An increase in the level of oleic acid (p = 0.040) was found in Group II compared to Group IV. The relative chance of DM2 is directly associated with an increase in the levels of omega-3 alpha-linolenic acid (odds ratio (OR) = 1.030, 95 confidence interval (CI) 1.002–1.058; p = 0.034) and omega-6 gamma-linolenic acid (OR = 1.026, 95 CI 1.001–1.051; p = 0.044). Newly diagnosed diabetes is inversely associated with the level of linoleic acid in blood plasma (OR = 0.545, 95 CI 0.301–0.996; p = 0.048), as well as directly associated with the level of oleic acid (OR = 1.961, 95 CI 1.054–3.648; p = 0.034). Prediabetes is inversely associated with the level of hexadecenoic acid (OR = 0.969, 95 CI 0.943–0.996; p = 0.025).
Conclusion. Detection of changes in the profile of unsaturated FAs in blood plasma can be used as an additional prognostic biomarker to identify patients at risk of developing DM.

About the Authors

V. S. Shramko
Research Institute of Internal and Preventive Medicine – Branch of Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences (IIPM – Branch of IC&G SD of RAS)
Russian Federation

175/1 B. Bogatkov Str., Novosibirsk, 630089


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article.



G. I. Simonova
Research Institute of Internal and Preventive Medicine – Branch of Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences (IIPM – Branch of IC&G SD of RAS)
Russian Federation

175/1 B. Bogatkov Str., Novosibirsk, 630089


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article.



L. V. Shcherbakova
Research Institute of Internal and Preventive Medicine – Branch of Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences (IIPM – Branch of IC&G SD of RAS)
Russian Federation

175/1 B. Bogatkov Str., Novosibirsk, 630089


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article.



A. D. Afanasieva
Research Institute of Internal and Preventive Medicine – Branch of Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences (IIPM – Branch of IC&G SD of RAS)
Russian Federation

175/1 B. Bogatkov Str., Novosibirsk, 630089


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article.



J. A. Balanova
Federal State Budgetary Institution National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of the Russian Federation
Russian Federation

10, Bldg. 3, Petroverigsky Lane, Moscow, 101990


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article.



A. E. Imaeva
Federal State Budgetary Institution National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of the Russian Federation
Russian Federation

10, Bldg. 3, Petroverigsky Lane, Moscow, 101990


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article.



S. A. Shalnova
Federal State Budgetary Institution National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of the Russian Federation
Russian Federation

10, Bldg. 3, Petroverigsky Lane, Moscow, 101990


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article.



Yu. I. Ragino
Research Institute of Internal and Preventive Medicine – Branch of Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences (IIPM – Branch of IC&G SD of RAS)
Russian Federation

175/1 B. Bogatkov Str., Novosibirsk, 630089


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article.



References

1. International Diabetes Federation. IDF Diabetes Atlas, 10th ed. Brussels, Belgium: 2021. Available at: https://www.diabetesatlas.org

2. American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S13–S27. DOI: 10.2337/dc18-S002.

3. Rao Kondapally Seshasai S., Kaptoge S., Thompson A., Di Angelantonio E., Gao P., Sarwar N. et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N. Engl. J. Med. 2011;364(9):829–841. DOI: 10.1056/NEJMoa1008862.

4. Lytrivi M., Castell A.L., Poitout V., Cnop M. Recent insights into mechanisms of β-cell lipo- and glucolipotoxicity in type 2 diabetes. J. Mol. Biol. 2020;432(5):1514–1534. DOI: 10.1016/j.jmb.2019.09.016.

5. Persaud S.J., Muller D., Belin V.D., Kitsou-Mylona I., Asare-Anane H., Papadimitriou A. et al. The role of arachidonic acid and its metabolites in insulin secretion from human islets of langerhans. Diabetes. 2007;56(1):197–203. DOI: 10.2337/db06-0490.

6. Lankinen M.A., Stančáková A., Uusitupa M., Ågren J., Pihlajamäki J., Kuusisto J. et al. Plasma fatty acids as predictors of glycaemia and type 2 diabetes. Diabetologia. 2015;58(11):2533–2544. DOI: 10.1007/s00125-015-3730-5.

7. Mousavi S.M., Jalilpiran Y., Karimi E., Aune D., Larijani B., Mozaffarian D. et al. Dietary Intake of Linoleic Acid, Its Concentrations, and the Risk of Type 2 Diabetes: A Systematic Review and Dose-Response Meta-analysis of Prospective Cohort Studies. Diabetes Care. 2021;44(9):2173–2181. DOI: 10.2337/dc21-0438.

8. Brown T.J., Brainard J., Song F., Wang X., Abdelhamid A., Hooper L.; PUFAH Group. Omega-3, omega-6, and total dietary polyunsaturated fat for prevention and treatment of type 2 diabetes mellitus: systematic review and meta-analysis of randomised controlled trials. BMJ. 2019;366:l4697. DOI: 10.1136/bmj.l4697.

9. Zhou Y., Tian C., Jia C. Association of fish and n-3 fatty acid intake with the risk of type 2 diabetes: a meta-analysis of prospective studies. Br. J. Nutr. 2012;108(3):408–417. DOI: 10.1017/S0007114512002036.

10. Li D. Omega-3 polyunsaturated fatty acids and non-communicable diseases: meta-analysis based systematic review. Asia Pac. J. Clin. Nutr. 2015;24(1):10–15. DOI: 10.6133/apjcn.2015.24.1.21.

11. Драпкина О.М., Шальнова С.А., Имаева А.Э., Баланова Ю.А., Максимов С.А., Муромцева Г.А. и др. Эпидемиология сердечно-сосудистых заболеваний и их факторов риска в регионах Российской Федерации. Третье исследование (ЭССЕ-РФ-3). Обоснование и дизайн исследования. Кардиоваскулярная терапия и профилактика. 2022;21(5):3246. DOI: 10.15829/1728-8800-2022-3246.

12. Покровская М.С., Борисова А.Л., Метельская В.А., Ефимова И.A., Долудин Ю.В., Козлова В.А. и др. Роль биобанкирования в организации крупномасштабных эпидемиологических исследований. Кардиоваскулярная терапия и профилактика. 2021;20(5):2958. DOI: 10.15829/1728-8800-2021-2958.

13. Shramko V.S., Polonskaya Y.V., Kashtanova E.V., Stakhneva E.M., Ragino Y.I. The short overview on the relevance of fatty acids for human cardiovascular disorders. Biomolecules. 2020;10(8):1127. DOI: 10.3390/biom10081127.

14. Choque B., Catheline D., Rioux V., Legrand P. Linoleic acid: between doubts and certainties. Biochimie. 2014;96:14–21. DOI: 10.1016/j.biochi.2013.07.012.

15. Forouhi N.G., Imamura F., Sharp S.J., Koulman A., Schulze M.B., Zheng J. et al. Association of Plasma Phospholipid n-3 and n-6 Polyunsaturated Fatty Acids with Type 2 Diabetes: The EPIC-InterAct Case-Cohort Study. PLoS Med. 2016;13(7):e1002094. DOI: 10.1371/journal.pmed.1002094.

16. Wu J.H.Y., Marklund M., Imamura F., Tintle N., Ardisson Korat A.V., de Goede J. et al. Omega-6 fatty acid biomarkers and incident type 2 diabetes: pooled analysis of individual-level data for 39 740 adults from 20 prospective cohort studies. Lancet Diabetes Endocrinol. 2017;5(12):965–974. DOI: 10.1016/S2213-8587(17)30307-8.

17. Miao Z., Lin J.S., Mao Y., Chen G.D., Zeng F.F., Dong H.L. et al. Erythrocyte n-6 Polyunsaturated Fatty Acids, Gut Microbiota, and Incident Type 2 Diabetes: A Prospective Cohort Study. Diabetes Care. 2020;43(10):2435–2443. DOI: 10.2337/dc20-0631.

18. Takkunen M.J., Schwab U.S., de Mello V.D., Eriksson J.G., Lindström J., Tuomilehto J. et al. Longitudinal associations of serum fatty acid composition with type 2 diabetes risk and markers of insulin secretion and sensitivity in the Finnish Diabetes Prevention Study. Eur. J. Nutr. 2016;55(3):967–979. DOI: 10.1007/s00394-015-0911-4.

19. Sergeant S., Rahbar E., Chilton F.H. Gamma-linolenic acid, dihommo-gamma linolenic, eicosanoids and inflammatory processes. Eur. J. Pharmacol. 2016;785:77–86. DOI: 10.1016/j.ejphar.2016.04.020.

20. Yary T., Voutilainen S., Tuomainen T.P., Ruusunen A., Nurmi T., Virtanen J.K. Serum n-6 polyunsaturated fatty acids, Δ5- and Δ6-desaturase activities, and risk of incident type 2 diabetes in men: the Kuopio Ischaemic Heart Disease Risk Factor Study. Am. J. Clin. Nutr. 2016;103(5):1337–1343. DOI: 10.3945/ajcn.115.128629.

21. Yuan Q., Xie F., Huang W., Hu M., Yan Q., Chen Z. et al. The review of alpha-linolenic acid: Sources, metabolism, and pharmacology. Phytother. Res. 2022;36(1):164–188. DOI: 10.1002/ptr.7295.

22. Qian F., Ardisson Korat A.V., Imamura F., Marklund M., Tintle N., Virtanen J.K. et al. n-3 Fatty Acid Biomarkers and Incident Type 2 Diabetes: An Individual Participant-Level Pooling Project of 20 Prospective Cohort Studies. Diabetes Care. 2021;44(5):1133–1142. DOI: 10.2337/dc20-2426.

23. Zhang L.W., McMahon Tobin G.A., Rouse R.L. Oleic acid and glucose regulate glucagon-like peptide 1 receptor expression in a rat pancreatic ductal cell line. Toxicol. Appl. Pharmacol. 2012;264(2):274–283. DOI: 10.1016/j.taap.2012.08.008.

24. Nemecz M., Constantin A., Dumitrescu M., Alexandru N., Filippi A., Tanko G. et al. The distinct effects of palmitic and oleic acid on pancreatic beta cell function: the elucidation of associated mechanisms and effector molecules. Front. Pharmacol. 2019;9:1554. DOI: 10.3389/fphar.2018.01554.

25. Ma W., Wu J.H., Wang Q., Lemaitre R.N., Mukamal K.J., Djoussé L. et al. Prospective association of fatty acids in the de novo lipogenesis pathway with risk of type 2 diabetes: the Cardiovascular Health Study. Am. J. Clin. Nutr. 2015;101(1):153–163. DOI: 10.3945/ajcn.114.092601.

26. Plötz T., Krümmel B., Laporte A., Pingitore A., Persaud S.J., Jörns A. et al. The monounsaturated fatty acid oleate is the major physiological toxic free fatty acid for human beta cells. Nutr. Diabetes. 2017;7(12):305. DOI: 10.1038/s41387-017-0005-x.

27. Kang M., Lee A., Yoo H.J., Kim M., Kim M., Shin D.Y. et al. Association between increased visceral fat area and alterations in plasma fatty acid profile in overweight subjects: a cross-sectional study. Lipids Health Dis. 2017;16(1):248. DOI: 10.1186/s12944-017-0642-z.

28. Astudillo A.M., Meana C., Guijas C., Pereira L., Lebrero P., Balboa M.A. et al. Occurrence and biological activity of palmitoleic acid isomers in phagocytic cells. J. Lipid. Res. 2018;59(2):237–249. DOI: 10.1194/jlr.M079145.

29. Guijas C., Meana C., Astudillo A.M., Balboa M.A., Balsinde J. Foamy monocytes are enriched in cis-7-hexadecenoic fatty acid (16:1n-9), a possible biomarker for early detection of cardiovascular disease. Cell Chem. Biol. 2016;23(6):689–699. DOI: 10.1016/j.chembiol.2016.04.012.


Review

For citations:


Shramko V.S., Simonova G.I., Shcherbakova L.V., Afanasieva A.D., Balanova J.A., Imaeva A.E., Shalnova S.A., Ragino Yu.I. Study of the spectrum of unsaturated fatty acids in the blood of men with diabetes mellitus in Novosibirsk (ESSE-RF3 in the Novosibirsk region). Bulletin of Siberian Medicine. 2025;24(1):124-133. https://doi.org/10.20538/1682-0363-2025-1-124-133

Views: 154


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)