Correlation of vascular endothelial growth factor receptor-2 expression and morphological changes in the myocardium of rats on a highcarbohydrate high-fat diet
https://doi.org/10.20538/1682-0363-2025-4-49-58
Abstract
Aim. To evaluate the relationship between the expression of vascular endothelial growth factor receptor 2 (VEGFR2) in the myocardium and its association with morphological changes in cardiac muscle cells in rats on a high-carbohydrate high-fat diet with regard to the age using the immunohistochemical method.
Materials and methods. The study was conducted on male Wistar rats aged 5 and 18 months, some of which were kept on a standard diet, while the other was previously kept on a high-carbohydrate and high-fat diet (HCHFD) for 90 days. VEGFR2 was detected by immunohistochemical staining of myocardial sections, signs of myocardial damage were assessed by the presence of perinuclear depletion (edema) of the sarcoplasm and contracture changes in cardiac muscle cells, karyopyknosis, and changes in the specific volumes of the stroma.
Results. An increase in the specific volume of VEGFR2 immunohistochemically positive cardiomyocytes occurs in young (5 months old) rats on HCHFD, in old (18 months old) rats on a standard diet, and, to the greatest extent, in aged animals receiving HCHFD. The change in the proportion of cardiomyocytes expressing VEGFR2 correlates with the content of cardiomyocytes with morphological signs of damage in the form of karyopyknosis, contracture, and depletion of the perinuclear zone of sarcoplasm. According to multiple regression analysis, karyopyknotic disorders made the greatest contribution to the effect on the change in VEGFR2 expression in cardiomyocytes in older animals.
Conclusion. HCHFD induces predictable changes in VEGFR2 expression in cardiac muscle cells, depending on age and the severity of myocardial damage. The study results suggest that the protective effect of VEGFR2 expression may be disrupted in HCHFD and with age.
Keywords
About the Authors
S. V. LogvinovRussian Federation
2 Moskovsky trakt, 634050 Tomsk
L. R. Mustafina
Russian Federation
2 Moskovsky trakt, 634050 Tomsk
V. A. Fokin
Russian Federation
2 Moskovsky trakt, 634050 Tomsk
O. E. Akbasheva
Russian Federation
2 Moskovsky trakt, 634050 Tomsk
A. V. Gerasimov
Russian Federation
2 Moskovsky trakt, 634050 Tomsk
A. V. Potapov
Russian Federation
2 Moskovsky trakt, 634050 Tomsk
E. A. Gereng
Russian Federation
2 Moskovsky trakt, 634050 Tomsk
T. V. Lasukova
Russian Federation
2 Moskovsky trakt, 634050 Tomsk
O. A. Tikhonovskaya
Russian Federation
2 Moskovsky trakt, 634050 Tomsk
N. V. Naryzhnaya
Russian Federation
111a Kievskaya St., 634012 Tomsk
B. K. Kurbatov
Russian Federation
111a Kievskaya St., 634012 Tomsk
A. S. Gorbunov
Russian Federation
111a Kievskaya St., 634012 Tomsk
References
1. Bartkowiak K., Bartkowiak M., Jankowska-Steifer E., Ratajska A., Kujawa M., Aniołek O. et al. Metabolic syndrome and cardiac vessel remodeling associated with vessel rarefaction: a possible underlying mechanism may result from a poor angiogenic response to altered VEGF signaling pathways. J. Vasc. Res. 2024;61(4):151–159. DOI: 10.1159/000538361.
2. Kafyra M., Kalafati I.P., Gavra I., Siest S., Dedoussis G.V. Associations of VEGF-A-related variants with adolescent cardiometabolic and dietary parameters. Nutrients. 2023;15(8):1884. DOI: 10.3390/nu15081884.
3. Bartkowiak K., Bartkowiak M., Jankowska-Steifer E., Ratajska A., Czarnowska E., Kujawa M. et al. Expression of mRNA for molecules that regulate angiogenesis, endothelial cell survival, and vascular permeability is altered in endothelial cells isolated from db/db mouse hearts. Histochem. Cell. Biol. 2024;162(6):523–539. DOI: 10.1007/s00418-024-02327-4.
4. Braile M., Marcella S., Cristinziano L., Galdiero M.R., Modestino L., Ferrara A.L. et al. VEGF-A in cardiomyocytes and heart diseases. Int. J. Mol. Sci. 2020;21(15):5294. DOI: 10.3390/ijms21155294.
5. Yazıcı D., Demir S.Ç., Sezer H. Insulin resistance, obesity, and lipotoxicity. Adv. Exp. Med. Biol. 2024;1460:391–430. DOI: 10.1007/978-3-031-63657-8_14.
6. Wang S.Y., Zou C., Liu X.F., Yan Y.J., Gu S.Z., Li X. Vascular endothelial growth factor ameliorated palmitate-induced cardiomyocyte injury via JNK pathway. In Vitro Cell. Dev. Biol. Anim. 2021;57(9):886–895. DOI: 10.1007/s11626-021-00616-z.
7. Zentilin L., Puligadda U., Lionetti V., Zacchigna S., Collesi C., Pattarini L. et al. Cardiomyocyte VEGFR-1 activation by VEGF-B induces compensatory hypertrophy and preserves cardiac function after myocardial infarction. FASEB J. 2010;24(5):1467–1478. DOI: 10.1096/fj.09-143180.
8. Fernezelian D., Rondeau P., Gence L., Diotel N. Telencephalic stab wound injury induces regenerative angiogenesis and neurogenesis in zebrafish: unveiling the role of vascular endothelial growth factor signaling and microglia. Neural Regen. Res. 2025;20(10):2938–2954. DOI: 10.4103/NRR.NRR-D-23-01881.
9. Chen F., Zhang K., Wang M., He Z., Yu B., Wang X. et al. VEGF-FGF signaling activates quiescent CD63+ liver stem cells to proliferate and differentiate. Adv. Sci. (Weinh). 2024;11(33):e2308711. DOI: 10.1002/advs.202308711.
10. Tang H., Yuan L., Xu Z., Jiang G., Liang Y., Li C. et al. Glucocorticoids induce femoral head necrosis in rats through the HIF-1α/VEGF signaling pathway. Sci. Rep. 2025;15(1):29205. DOI: 10.1038/s41598-025-15018-4.
11. Логвинов С.В., Мустафина Л.Р., Курбатов Б.К., Сиротина М.А., Горбунов С.А., Нарыжная Н.В. Влияние высокоуглеводной высокожировой диеты на возрастные изменения миокарда у крыс. Сибирский журнал клинической и экспериментальной медицины. 2023;38(1):90–98. DOI: 10.29001/2073-8552-2023-38-1-90-98.
12. Logvinov S.V., Naryzhnaya N.V., Kurbatov B.K., Gorbunov A.S., Birulina Y.G., Maslov L.L. et al. High carbohydrate high fat diet causes arterial hypertension and histological changes in the aortic wall in aged rats: The involvement of connective tissue growth factors and fibronectin. Exp. Gerontol. 2021;154:111543. DOI: 10.1016/j.exger.2021.111543.
13. Taimeh Z., Loughran J., Birks E.J., Bolli R. Vascular endothelial growth factor in heart failure. Nat. Rev. Cardiol. 2013;10(9):519–530. DOI: 10.1038/nrcardio.2013.94.
14. Tang J., Wang J., Kong X., Yang J., Guo L., Zheng F. et al. Vascular endothelial growth factor promotes cardiac stem cell migration via the PI3K/Akt pathway. Exp. Cell. Res. 2009;315(20):3521–3231. DOI: 10.1016/j.yexcr.2009.09.026.
15. Friehs I., Barillas R., Vasilyev N.V., Roy N., McGowan F.X., del Nido P.J. Vascular endothelial growth factor prevents apoptosis and preserves contractile function in hypertrophied infant heart. Circulation. 2006;114(1 Suppl.):I290–I295. DOI: 10.1161/CIRCULATIONAHA.105.001289.
16. Conway E.M., Collen D., Carmeliet P. Molecular mechanisms of blood vessel growth. Cardiovasc. Res. 2001;49(3):507– 521. DOI: 10.1016/s0008-6363(00)00281-9.
17. Marrow J.P., Alshamali R., Edgett B.A., Allwood M.A., Cochrane K.L.S., Al-Sabbag S. et al. Cardiomyocyte crosstalk with endothelium modulates cardiac structure, function, and ischemia-reperfusion injury susceptibility through erythropoietin. Front. Physiol. 2024;15:1397049. DOI: 10.3389/fphys.2024.1397049.
18. Лушникова Е.Л., Мжельская М.М., Колдышева Е.В., Клинникова М.Г. Иммуногистохимическая оценка экспрессии рецептора-2 вазоэндотелиального фактора роста (VEGFR2) в кардиомиоцитах крыс при действии доксорубицина и амида бетулоновой кислоты. Сибирский научный медицинский журнал. 2018;38(6):5–12. DOI: 10.15372/SSMJ20180601.
19. Mao R.M., Du Z.B., Gao W.M., Mi L., Zhu B.L. Time-dependent expression of vascular endothelial growth factor after acute myocardial ischemia in rats. Fa Yi Xue Za Zhi. 2012;28(3):179–184. In Chinese. PMID: 22812217.
20. Zhu B.L., Tanaka S., Ishikawa T., Zhao D., Li D.R., Michiue T. et al. Forensic pathological investigation of myocardial hypoxia-inducible factor-1 alpha, erythropoietin and vascular endothelial growth factor in cardiac death. Leg. Med. (Tokyo). 2008;10(1):11–19. DOI: 10.1016/j.legalmed.2007.06.002.
21. Rodríguez-Sinovas A., Abdallah Y., Piper H.M., Garcia-Dorado D. Reperfusion injury as a therapeutic challenge in patients with acute myocardial infarction. Heart Fai. Rev. 2007;12(3- 4):207–216. DOI: 10.1007/s10741-007-9039-9.
22. Tao Z., Chen B., Tan X., Zhao Y., Wang L., Zhu T. et al. Coexpression of VEGF and angiopoietin-1 promotes angiogenesis and cardiomyocyte proliferation reduces apoptosis in porcine myocardial infarction (MI) heart. Proc. Natl. Acad. Sci. USA. 2011;108:2064–2069. DOI: 10.1073/pnas.1018925108.
23. Ruixing Y., Dezhai Y., Hai W., Kai H., Xianghong W., Yuming C. Intramyocardial injection of vascular endothelial growth factor gene improves cardiac performance and inhibits cardiomyocyte apoptosis. Eur. J. Heart. Fail. 2007;9(4):343– 351. DOI: 10.1016/j.ejheart.2006.10.007.
24. Cao W., Zhang H., Zhou N., Zhou R., Zhang X., Yin J. et al. Functional recovery of myocardial infarction by specific EBPPR1P peptides bridging injectable cardiac extracellular matrix and vascular endothelial growth factor. J. Biomed. Mater. Res. Part A. 2023;111(7):995–1005. DOI: 10.1002/jbm.a.37483.
25. Yang H., Zhang C., Kim W., Shi M., Kiliclioglu M., Bayram C. et al. Multi-tissue network analysis reveals the effect of JNK inhibition on dietary sucrose-induced metabolic dysfunction in rats. Elife. 2025;13:RP98427. DOI: 10.7554/eLife.98427.
26. Hu N., Zhang Y. TLR4 knockout attenuated high fat diet-induced cardiac dysfunction via NF-kappaB/JNK-dependent activation of autophagy. Biochim. Biophys. Acta Mol. Basis. Dis. 2017;1863(8):2001–2011. DOI: 10.1016/j.bbadis.2017.01.010.
27. Zhang K., Huang Q., Deng S., Yang Y., Li J., Wang S. Mechanisms of TLR4-mediated autophagy and nitroxidative stress. Front. Cell. Infect. Microbiol. 2021;11:766590. DOI: 10.3389/fcimb.2021.766590.
28. Zou R., Shi W., Chang X., Zhang M., Tan S., Li R. et al. The DNA-dependent protein kinase catalytic subunit exacerbates endotoxemia-induced myocardial microvascular injury by disrupting the MOTS-c/JNK pathway and inducing profilin-mediated lamellipodia degradation. Theranostics. 2024;14(4):1561–1582. DOI: 10.7150/thno.92650.
29. Leonardini A., D’Oria R., Incalza M.A., Caccioppoli C., Andrulli Buccheri V., Cignarelli A. et al. GLP-1 receptor activation inhibits palmitate-induced apoptosis via ceramide in human cardiac progenitor cells. J. Clin. Endocrinol. Metab. 2017;102(11):4136–4147. DOI: 10.1210/jc.2017-00970.
30. Shalaby Y.M., Al Aidaros A., Valappil A., Ali B.R., Akawi N. Role of ceramides in the molecular pathogenesis and potential therapeutic strategies of cardiometabolic diseases: what we know so far. Front. Cell. Dev. Biol. 2022;9:816301. DOI: 10.3389/fcell.2021.816301.
31. Mangali S., Bhat A., Udumula M.P., Dhar I., Sriram D., Dhar A. Inhibition of protein kinase R protects against palmitic acid-induced inflammation, oxidative stress, and apoptosis through the JNK/NF-kB/NLRP3 pathway in cultured H9C2 cardiomyocytes. J. Cell. Biochem. 2019;120(3):3651–3663. DOI: 10.1002/jcb.27643.
32. Mangali S., Bhat A., Dasari D. Sriram D., Dhar A. Inhibition of double stranded RNA dependent protein kinase (PKR) abrogates isoproterenol induced myocardial ischemia in vitro in cultured cardiomyocytes and in vivo in wistar rats. Eur. J. Pharmacol. 2021;906:174223. DOI: 10.1016/j.ejphar.2021.174223.
33. Zhou J., Yao Y., Zhang J., Wang Z., Zheng T., Lu Y. et al. JNK-dependent phosphorylation and nuclear translocation of EGR-1 promotes cardiomyocyte apoptosis. Apoptosis. 2022;27(3-4):246–260. DOI: 10.1007/s10495-022-01714-3.
Review
For citations:
Logvinov S.V., Mustafina L.R., Fokin V.A., Akbasheva O.E., Gerasimov A.V., Potapov A.V., Gereng E.A., Lasukova T.V., Tikhonovskaya O.A., Naryzhnaya N.V., Kurbatov B.K., Gorbunov A.S. Correlation of vascular endothelial growth factor receptor-2 expression and morphological changes in the myocardium of rats on a highcarbohydrate high-fat diet. Bulletin of Siberian Medicine. 2025;24(4):49-58. (In Russ.) https://doi.org/10.20538/1682-0363-2025-4-49-58
JATS XML









































