Modern methods of DNA probe synthesis for fluorescence in situ hybridization (FISH): technologies and applications
https://doi.org/10.20538/1682-0363-2025-4-111-119
Abstract
Fluorescent in situ hybridization (FISH) remains an indispensable tool for molecular diagnostics, which makes it possible to detect chromosomal abnormalities underlying many hereditary and oncological diseases with high accuracy. The advancement of medicine towards personalized approaches and the expansion of the spectrum of diagnosed pathologies require constant improvement of methods for synthesizing DNA probes. Despite existing limitations such as the cost and complexity of synthesis, the future of FISH diagnostics is linked to the development of highly specific, multiplex, and affordable probes that will enable the transition to complex genome and transcriptome analysis. The aim of this article was to reflect the evolution of probe production methods from classical to high-tech, including SABER-FISH, CRISPR/Cas9 (CASFISH), and smFISH technologies.
About the Authors
T. S. BabayRussian Federation
10 Naberezhnaya reki Ushaiki St., 634050 Tomsk
S. A. Vasilyev
Russian Federation
10 Naberezhnaya reki Ushaiki St., 634050 Tomsk
References
1. Cheng L., Davidson D.D., Zhang S. Genomic aberration detection by fluorescence in situ hybridization. Hum. Pathol. 2025; 7:105906. DOI: 10.1016/j.humpath.2025.105906.
2. Lu S., Liu K., Wang D., Ye Y., Jiang Z., Gao Y. Genomic structural variants analysis in leukemia by a novel cytogenetic technique: Optical genome mapping. Cancer Sci. 2024;115(11):3543–3551. DOI: 10.1111/cas.16325.
3. Рубцов Н.Б. Методы работы с хромосомами млекопитающих: учеб. пособие. Новосибирск: Новосиб. гос. ун-т, 2006:152.
4. Нугис В.Ю. FISH-метод: способ цитогенетической ретроспективной оценки дозы. Саратовский научно-медицинский журнал. 2016;12(4):671–678.
5. Levsky J.M. Fluorescence in situ hybridization: past, present and future. Journal of Cell Science. 2003;116(14):2833–2838. DOI: 10.1242/jcs.00633.
6. Kumar R., Baisvar V.S., Kushwaha B., Murali S., Singh V.K. Improved protocols for BAC insert DNA isolation, BAC end sequencing and FISH for construction of BAC based physical map of genes on the chromosomes. Mol. Biol. Rep. 2020;47(3):2405–2413. DOI: 10.1007/s11033-020-05283-z.
7. Jiang J. Fluorescence in situ hybridization in plants: recent developments and future applications. Chromosome Res. 2019;27(3):153–165. DOI: 10.1007/s10577-019-09607-z.
8. Prudent E., Raoult D. Fluorescence in situ hybridization, a complementary molecular tool for the clinical diagnosis of infectious diseases by intracellular and fastidious bacteria. FEMS Microbiol. Rev. 2019;43(1):88–107. DOI: 10.1093/femsre/fuy040.
9. Sun M.L., Zhang H.G., Liu X.Y., Yue F.G., Jiang Y.T., Li S.B. et al. Prenatal diagnosis and molecular cytogenetic characterization of a small supernumerary marker chromosome (sSMC) inherited from her mosaic sSMC(15) mother and a literature review. Taiwan. J. Obstet. Gynecol. 2020;59(6):963–967. DOI: 10.1016/j.tjog.2020.09.030.
10. Буяновская О.А., Глинкина Ж.И., Каретникова Н.А., Бахарев В.А. Молекулярно-генетические методы в пренатальной диагностике хромосомных аномалий. Акушерство и гинекология. 2012;8-1:4–9.
11. Duffy M.J., Harbeck N., Nap M., Molina R., Nicolini A., Senkus E. et al. Clinical use of biomarkers in breast cancer: Updated guidelines from the European Group on Tumor Markers (EGTM). Eur. J. Cancer. 2017;75:284–298. DOI: 10.1016/j.ejca.2017.01.017.
12. Luo H., Xu X., Ye M., Sheng B., Zhu X. The prognostic value of HER2 in ovarian cancer: A meta-analysis of observational studies. PLoS One. 2018;13(1):e0191972. DOI: 10.1371/journal.pone.0191972.
13. Paulasova P., Pellestor F. The peptide nucleic acids (PNAs): a new generation of probes for genetic and cytogenetic analyses. Ann. Genet. 2004;47:349–358. DOI: 10.1016/j.anngen.2004.07.001.
14. Nielsen P.E., Egholm M., Berg R.H., Buchardt O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science. 1991;254(5037):1497– 500. DOI: 10.1126/science.1962210.
15. Pellestor F., Paulasova P., Macek M., Hamamah S. Les PNA (peptide nucleic acids): des sondes high-tech pour l’analyse génétique et cytogénétique moléculaire [The peptide nucleic acids (PNAs): “high-tech” probes for genetic and molecular cytogenetic investigations]. Med. Sci. (Paris). 2005;21(8- 9):753–758. DOI: 10.1051/medsci/2005218-9753.
16. Pellestor F., Paulasova P., Hamamah S. Peptide nucleic acids (PNAs) as diagnostic devices for genetic and cytogenetic analysis. Curr. Pharm. Des. 2008;14(24):2439–2444. DOI: 10.2174/138161208785777405.
17. Bolzán A.D. Considerations on the scoring of telomere aberrations in vertebrate cells detected by telomere or telomere plus centromere PNA-FISH. Mutat. Res. Rev. Mutat. Res. 2024;794:108507. DOI: 10.1016/j.mrrev.2024.108507.
18. Huang L., Ma F., Chapman A., Lu S., Xie X.S. Single-cell whole-genome amplification and sequencing: methodology and applications. Annu. Rev. Genomics Hum. Genet. 2015;16:79– 102. DOI: 10.1146/annurev-genom-090413-025352.
19. Volozonoka L., Miskova A., Gailite L. Whole genome amplification in preimplantation genetic testing in the era of massively parallel sequencing. Int. J. Mol. Sci. 2022;23(9):4819. DOI: 10.3390/ijms23094819.
20. Darouich S., Popovici C., Missirian C., Moncla A. Use of DOP-PCR for amplification and labeling of BAC DNA for FISH. Biotech. Histochem. 2012;87(2):117–121. DOI: 10.3109/10520295.2011.559175.
21. Beaucage S.L., Caruthers M.H. Deoxynucleoside phosphoramidites – a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedr. Lett. 1981;22:1859–1862. DOI: 10.1016/S0040-4039(01)90461-7.
22. Kosuri S., Church G.M. Large-scale de novo DNA synthesis: technologies and applications. Nat. Methods. 2014;11(5):499– 507. DOI: 10.1038/nmeth.2918.
23. Lönnberg H. Synthesis of oligonucleotides on a soluble support. Beilstein J. Org. Chem. 2017;13:1368–1387. DOI: 10.3762/bjoc.13.134.
24. Синяков А.Н., Рябинин В.А., Костина Е.В. Применение олигонуклеотидов, полученных с помощью микрочиповых синтезаторов ДНК, для синтеза генетических конструкций. Молекулярная биология. 2021;55(4):562–577. DOI: 10.1134/S0026893321030109.
25. Hughes T.R., Mao M., Jones A.R., Burchard J., Marton M.J., Shannon K.W. et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat. Biotechnol. 2001;19(4):342–347. DOI: 10.1038/86730.
26. Дымшиц Г.М. Нерадиоактивно меченые олиго- и полинуклеотидные зонды – инструмент изучения структуры генома и диагностики. Соросовский образовательный журнал. 2001;7(9):30–37.
27. Morrison L.E., Ramakrishnan R., Ruffalo T.M., Wilber K.A. Labeling fluorescence in situ hybridization probes for genomic targets. Methods Mol. Biol. 2002;204:21–40. DOI: 10.1385/1-59259-300-3:21.
28. Chudova I. Fluorescence in situ hybridization. In: Chromosomal alterations: methods, results and importance in human’s health. Berlin, Heidelberg, New York: Springer-Verlag. 2007;285–299.
29. Fominaya A., Loarce Y., González J.M., Ferrer E. Tyramide signal amplification: fluorescence in situ hybridization for identifying homoeologous chromosomes. Methods Mol. Biol. 2016;1429:35–48. DOI: 10.1007/978-1-4939-3622-9_4.
30. Богомолов А.Г., Карамышева Т.В., Рубцов Н.Б. Флуоресцентная гибридизация in situ ДНК-проб, полученных из индивидуальных хромосом и хромосомных районов. Молекулярная биология. 2014;48(6):881–890. DOI: 10.7868/S0026898414060032.
31. Kesälahti R., Kumpula T.A., Cervantes S., Kujala S.T., Mattila T.M., Tyrmi J.S. et al. Optimising exome captures in species with large genomes using species-specific repetitive DNA blocker. Mol. Ecol. Resour. 2025;25(3):e14053. DOI: 10.1111/1755-0998.14053.
32. Schubert I., Fransz P.F., Fuchs J., de Jong J.H. Chromosome painting in plants. Methods Cell Sci. 2001;23(1-3):57–69. Masabanda J.S., Griffin D.K. Generation of chromosome paints: approach for increasing specificity and intensity of signals. Biotechniques. 2003;34(3):530–532,534,536. DOI: 10.2144/03343st05.
33. Masabanda J.S., Griffin D.K. Generation of chromosome paints: approach for increasing specificity and intensity of signals. Biotechniques. 2003;34(3):530–532,534,536. DOI:10.2144/03343st05.
34. Kishi J.Y., Schaus T.E., Gopalkrishnan N., Xuan F., Yin P. Programmable autonomous synthesis of single-stranded DNA. Nat Chem. 2018;10(2):155–164. DOI: 10.1038/nchem.2872.
35. Kishi J.Y., Lapan S.W., Beliveau B.J., West E.R., Zhu A., Sasaki H.M. et al. SABER amplifies FISH: enhanced multiplexed imaging of RNA and DNA in cells and tissues. Nat. Methods. 2019;16(6):533–544. DOI: 10.1038/s41592-019-0404-0.
36. Silahtaroglu A.N., Tommerup N., Vissing H. FISHing with locked nucleic acids (LNA): evaluation of different LNA/ DNA mixmers. Mol. Cell Probes. 2003;17(4):165–169. DOI: 10.1016/s0890-8508(03)00048-3.
37. Fontenete S., Carvalho D., Guimarães N., Madureira P., Figueiredo C., Wengel J. et al. Application of locked nucleic acid-based probes in fluorescence in situ hybridization. Appl. Microbiol. Biotechnol. 2016;100(13):5897–5906. DOI: 10.1007/s00253-016-7429-4.
38. Gaspar I., Wippich F., Ephrussi A. Enzymatic production of single-molecule FISH and RNA capture probes. RNA. 2017;23(10):1582–1591. DOI: 10.1261/rna.061184.117.
39. Gaspar I., Wippich F., Ephrussi A. Terminal deoxynucleotidyl transferase mediated production of labeled probes for single-molecule FISH or RNA capture. Bio-Protoc. 2018;8(5):e2750. DOI: 10.21769/BioProtoc.2750.
40. Safieddine A., Coleno E., Lionneton F., Traboulsi A.M., Salloum S., Lecellier C.H. et al. HT-smFISH: a cost-effective and flexible workflow for high-throughput single-molecule RNA imaging. Nat. Protoc. 2023;18(1):157–187. DOI: 10.1038/s41596-022-00750-2.
41. Liu Y., Le P., Lim S.J., Ma L., Sarkar S., Han Z. et al. Enhanced mRNA FISH with compact quantum dots. Nat. Commun. 2018;9(1):4461. DOI: 10.1038/s41467-018-06740-x.
42. Liu Y., Han Z., Sarkar S., Smith A.M. Fluorescence in situ hybridization with quantum dot labels in E. coli cells. Methods Mol. Biol. 2021;2246:141–155. DOI: 10.1007/978-1-0716-1115-9_10.
43. Deng W., Shi X., Tjian R., Lionnet T., Singer R.H. CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. Proc. Natl. Acad. Sci. USA. 2015;112(38):11870– 11875. DOI: 10.1073/pnas.1515692112.
Review
For citations:
Babay T.S., Vasilyev S.A. Modern methods of DNA probe synthesis for fluorescence in situ hybridization (FISH): technologies and applications. Bulletin of Siberian Medicine. 2025;24(4):111-119. (In Russ.) https://doi.org/10.20538/1682-0363-2025-4-111-119
JATS XML









































