Galectin-1 and -3: intracellular pathways of signal transduction in carcinogenesis (lecture)
https://doi.org/10.20538/1682-0363-2025-4-184-193
Abstract
The lecture was created following the analysis of experimental data and review articles presented in the PubMed database. The lecture consists of five parts summarizing the literature data on galectin-1 and -3 in terms of their modulating effect in signal transduction processes. Possible mechanisms of galectin-1 and -3 involvement in proliferation, apoptosis, angiogenesis, migration, and adhesion of tumor cells are considered. The lecture data make it possible to identify intracellular signaling molecules, whose qualitative or quantitative changes can prove the effect of candidate compounds of galectin-1 and -3 inhibitors as potential antitumor agents.
Keywords
About the Authors
V. A. SerebryakovaRussian Federation
2 Moscovsky trakt, 634050 Tomsk
E. L. Golovina
Russian Federation
2 Moscovsky trakt, 634050 Tomsk
M. V. Meleshko
Russian Federation
2 Moscovsky trakt, 634050 Tomsk
O. E. Vaizova
Russian Federation
2 Moscovsky trakt, 634050 Tomsk
References
1. Guda M.R., Tsung A.J., Asuthkar S., Velpula K.K. Galectin-1 activates carbonic anhydrase IX and modulates glioma metabolism. Cell Death Dis. 2022;13(6):574. DOI: 10.1038/s41419-022-05024-z.
2. Radziejewska I. Galectin-3 and epithelial MUC1 mucin-interactions supporting cancer development. Cancers (Basel). 2023;15(10):2680. DOI: 10.3390/cancers15102680.
3. Yaylim I., Aru M., Farooqi A.A., Hakan M.T., Buttari B., Arese M. et al. Regulation of Nrf2/Keap1 signaling pathway in cancer drug resistance by galectin-1: cellular and molecular implications. Cancer Drug Resist. 2024;7:8. DOI: 10.20517/cdr.2023.79.
4. Girotti M.R., Salatino M., Dalotto-Moreno T., Rabinovich G.A. Sweetening the hallmarks of cancer: galectins as multifunctional mediators of tumor progression. J. Exp. Med. 2020;217(2):e20182041. DOI: 10.1084/jem.20182041.
5. Ko F.C.F., Yan S., Lee K.W., Lam S.K., Ho J.C.M. Chimera and tandem-repeat type galectins: the new targets for cancer immunotherapy. Biomolecules. 2023;13(6):902. DOI: 10.3390/biom13060902.
6. Kapetanakis N.I., Busson P. Galectins as pivotal components in oncogenesis and immune exclusion in human malignancies. Front. Immunol. 2023;14:1145268. DOI: 10.3389/fimmu.2023.1145268.
7. Bogut A., Stojanovic B., Jovanovic M., Dimitrijevic Stojanovic M., Gajovic N., Stojanovic B.S. et al. Galectin-1 in pancreatic ductal adenocarcinoma: bridging tumor biology, immune evasion, and therapeutic opportunities. Int. J. Mol. Sci. 2023;24(21):15500. DOI: 10.3390/ijms242115500.
8. Le Mercier M., Fortin S., Mathieu V., Kiss R., Lefranc F. Galectins and gliomas. Brain Pathol. 2010;20(1):17–27. DOI: 10.1111/j.1750-3639.2009.00270.x.
9. Nehmé R., St-Pierre Y. Targeting intracellular galectins for cancer treatment. Front. Immunol. 2023;14:1269391. DOI: 10.3389/fimmu.2023.1269391.
10. Stanley P. Galectin-1 pulls the strings on VEGFR2. Cell. 2014;156(4):625–626. DOI: 10.1016/j.cell.2014.01.059.
11. Storti P., Marchica V., Giuliani N. Role of galectins in multiple myeloma. Int. J. Mol. Sci. 2017;18(12):2740. DOI: 10.3390/ijms18122740.
12. Lin Y., Lubman D.M. The role of N-glycosylation in cancer. Acta Pharm. Sin. B. 2024;14(3):1098–1110. DOI: 10.1016/j.apsb.2023.10.014.
13. Croci D.O., Cerliani J.P., Dalotto-Moreno T., Méndez-Huergo S.P., Mascanfroni I.D., Dergan-Dylon S. et al. Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors. Cell. 2014;156:744–758. DOI: 10.1016/j.cell.2014.01.043.
14. Cardoso A.C., Andrade L.N., Bustos S.O., Chammas R. Galectin-3 determines tumor cell adaptive strategies in stressed tumor microenvironments. Front. Oncol. 2016;6:127. DOI: 10.3389/fonc.2016.00127.
15. Hassinen A., Khoder-Agha F., Khosrowabadi E., Mennerich D., Harrus D., Noel M. et al. A Golgi-associated redox switch regulates catalytic activation and cooperative functioning of ST6Gal-I with B4GalT-I. Redox Biol. 2019;24:101182. DOI: 10.1016/j.redox.2019.101182.
16. Marhuenda E., Fabre C., Zhang C., Martin-Fernandez M., Iskratsch T., Saleh A. et al. Glioma stem cells invasive phenotype at optimal stiffness is driven by MGAT5 dependent mechanosensing. J. Exp. Clin. Cancer Res. 2021;40(1):139. DOI: 10.1186/s13046-021-01925-7.
17. Lin Y., Lubman D.M. The role of N-glycosylation in cancer. Acta Pharm. Sin. B. 2024;14(3):1098–1110. DOI: 10.1016/j.apsb.2023.10.014.
18. De-Souza-Ferreira M., Ferreira É.E., de-Freitas-Junior J.C.M. Aberrant N-glycosylation in cancer: MGAT5 and β1,6-GlcNAc branched N-glycans as critical regulators of tumor development and progression. Cell. Oncol. (Dordr.). 2023;46(3):481–501. DOI: 10.1007/s13402-023-00770-4.
19. Liu Y., Bineva-Todd G., Meek R.W., Mazo L., Piniello B., Moroz O. A bioorthogonal precision tool for human N-acetylglucosaminyltransferase V. J. Am. Chem. Soc. 2024;146(39):26707–26718. DOI: 10.1021/jacs.4c05955.
20. Funasaka T., Raz A., Nangia-Makker P. Galectin-3 in angiogenesis and metastasis. Glycobiology. 2014;24(10):886–891. DOI: 10.1093/glycob/cwu086.
21. Carabias P., Espelt M.V., Bacigalupo M.L., Rojas P., Sarrias L., Rubin A. et al. Galectin-1 confers resistance to doxorubicin in hepatocellular carcinoma cells through modulation of P-glycoprotein expression. Cell Death Dis. 2022;13(1):79. DOI: 10.1038/s41419-022-04520-6.
22. Elad-Sfadia G., Haklai R., Ballan E., Gabius H.J., Kloog Y. Galectin-1 augments Ras activation and diverts Ras signals to Raf-1 at the expense of phosphoinositide 3-kinase. J. Biol. Chem. 2002;277(40):37169–37175. DOI: 10.1074/jbc.M205698200.
23. Shalom-Feuerstein R., Cooks T., Raz A., Kloog Y. Galectin-3 regulates a molecular switch from N-Ras to K-Ras usage in human breast carcinoma cells. Cancer Res. 2005;65(16):7292– 7300. DOI: 10.1158/0008-5472.CAN-05-0775.
24. Elad-Sfadia G., Haklai R., Balan E., Kloog Y. Galectin-3 augments K-Ras activation and triggers a Ras signal that attenuates ERK but not phosphoinositide 3-kinase activity. J. Biol. Chem. 2004;279(33):34922–34930. DOI: 10.1074/jbc.M312697200.
25. Wang H.C., Xia R., Chang W.H., Hsu S.W., Wu C.T., Chen C.H. et al. Improving cancer immunotherapy in prostate cancer by modulating T cell function through targeting the galectin-1. Front. Immunol. 2024;15:1372956. DOI: 10.3389/fimmu.2024.1372956.
26. Fischer C., Sanchez-Ruderisch H., Welzel M., Wiedenmann B., Sakai T., André S. et al. Galectin-1 interacts with the {alpha}5{beta}1 fibronectin receptor to restrict carcinoma cell growth via induction of p21 and p27. J. Biol. Chem. 2005;280(44):37266–37277. DOI: 10.1074/jbc.M411580200.
27. Wang Y., Nangia-Makker P., Tait L., Balan V., Hogan V., Pienta K.J. et al. Regulation of prostate cancer progression by galectin-3. Am. J. Pathol. 2009;174(4):1515–1523. DOI: 10.2353/ajpath.2009.080816.
28. Yu F., Yu C., Li F., Zuo Y., Wang Y., Yao L. et al. Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct. Target. Ther. 2021;6(1):307. DOI: 10.1038/s41392-021-00701-5.
29. Liu J., Xiao Q., Xiao J., Niu C., Li Y., Zhang X. et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct. Target. Ther. 2022;7(1):1–23. DOI: 10.1038/s41392-021-00762-6.
30. Song M., Pan Q., Yang J., He J., Zeng J., Cheng S. et al. Galectin-3 favours tumour metastasis via the activation of β-catenin signalling in hepatocellular carcinoma. Br. J. Cancer. 2020;123(10):1521–1534. DOI: 10.1038/s41416-020-1022-4.
31. Liu Y., Xie L., Wang D., Li D., Xu G., Wang L. et al. Galectin-3 and β-catenin are associated with a poor prognosis in serous epithelial ovarian cancer. Cancer Manag. Res. 2018;10:3963–3971. DOI: 10.2147/CMAR.S171146.
32. Merlin J., Stechly L., de Beaucé S., Monte D., Leteurtre E., Van Seuningen I. et al. Galectin-3 regulates MUC1 and EGFR cellular distribution and EGFR downstream pathways in pancreatic cancer cells. Oncogene. 2011;30:2514–2525. DOI:10.1038/onc.2010.631.
33. Wu M.H., Ying N.W., Hong T.M., Chiang W.F., Lin Y.T., Chen Y.L. Galectin-1 increases vascular permeability through the neuropilin-1/vascular endothelial growth factor receptor-1 complex. Angiogenesis. 2014;17:839–849. DOI: 10.1007/s10456-014-9431-8.28.
34. Pan Z., Xu G., Zhang Y., Wu M., Yu J., He X. et al. Galectin-1 promotes gastric carcinoma progression and cisplatin resistance through the NRP-1/c-JUN/Wee1 pathway. J. Gastric Cancer. 2024;24(3):300–315. DOI: 10.5230/jgc.2024.24.e25.
35. Mori Y., Yashiro M., Sawada T., Hirakawa K., Murata T., Nakada H. Binding of galectin-3, a β-galactoside-binding lectin, to MUC1 protein enhances phosphorylation of extracellular signal-regulated Kinase ½ (ERK1/2) and Akt, promoting tumor cell malignancy. J. Biol. Chem. 2015;290:26125–26140. DOI: 10.1074/jbc.M115.651489.
36. Колобовникова Ю.В., Дмитриева А.И., Янкович К.И., Васильева О.А., Пурлик И.Л., Новицкий В.В. и др. Галектин-1-опосредованная экспрессия белков-регуляторов клеточного цикла и ростовых факторов при раке желудка. Бюллетень сибирской медицины. 2017;16(4):165–172. DOI: 10.20538/1682-0363-2017-4-165-172.
37. Mazurek N., Sun Y.J., Liu K.F., Gilcrease M.Z., Schober W., Nangia-Makker P. et al. Phosphorylated galectin-3 mediates tumor necrosis factor-related apoptosis-inducing ligand signaling by regulating phosphatase and tensin homologue deleted on chromosome 10 in human breast carcinoma cells. J. Biol. Chem. 2007;282(29):21337–21348. DOI: 10.1074/jbc.M608810200.
38. Woś J., Szymańska A., Lehman N., Chocholska S., Zarobkiewicz M., Pożarowski P. et al. Can galectin-3 be a novel biomarker in chronic lymphocytic leukemia? Cells. 2023;13(1):30. DOI: 10.3390/cells13010030.
39. Oka N., Nakahara S., Takenaka Y., Fukumori T., Hogan V., Kanayama H.O. Galectin-3 inhibits tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by activating Akt in human bladder carcinoma cells. Cancer Res. 2005;65(17):7546–7553. DOI: 10.1158/0008-5472.CAN-05-1197.
40. Fang Z., Qiu F., Zhao J.F., Sun Q., Qiao B. et al. Role and mechanism of Galectin-3 gene in proliferation, invasion, and apoptosis of oral squamous cell carcinoma. West China J. Stomat. 2018;36(4):404409. DOI: 10.7518/hxkq.2018.04.011.
41. Zhao Z., Wang M., Miller M.C., He Z., Xu X., Zhou Y. et al. Isomerization of proline-46 in the N-terminal tail of galectin-3 enhances T cell apoptosis via the ROS-ERK pathway. Int. J. Biol. Macromol. 2024;256(Pt 1):128304. DOI: 10.1016/j.ijbiomac.2023.128304.
42. Yu X., Qian J., Ding L., Yin S., Zhou L., Zheng S. Galectin-1: a traditionally immunosuppressive protein displays context-dependent capacities. Int. J. Mol. Sci. 2023;24(7):6501. DOI: 10.3390/ijms24076501.
43. Brandt B., Abou-Eladab E.F., Tiedge M., Walzel H. Role of the JNK/c-Jun/AP-1 signaling pathway in galectin-1-induced T-cell death. Cell Death Dis. 2010;1(2):e23. DOI: 10.1038/cddis.2010.1.
44. Zetterberg F.R., Peterson K., Nilsson U.J., Andréasson Dahlgren K., Diehl C., Holyer I. et al. Discovery of the selective and orally available galectin-1 inhibitor GB1908 as a potential treatment for lung cancer. J. Med. Chem. 2024;67(11):9374– 9388. DOI: 10.1021/acs.jmedchem.4c00485.
45. Hahn H.P., Pang M., He J., Hernandez J.D., Yang R.Y., Li L.Y. et al. Galectin-1 induces nuclear translocation of endonuclease G in caspase- and cytochrome c-independent T cell death. Cell Death Differ. 2004;11(12):1277–1286. DOI: 10.1038/sj.cdd.4401485.
46. Васильева О.А., Новицкий В.В. Апоптоз опухолевых клеток линии Jurkat под действием галектина-3. Российский иммунологический журнал. 2015;91(2-2(18)):202–204.
47. Васильева О.А., Исаева А.В., Рязанцева Н.В. Влияние галектина-3 на апоптоз активированных in vitro CD4+ - лимфоцитов. Вестник науки Сибири. 2015;(15):347–351.
48. Thijssen V.L., Barkan B., Shoji H., Aries I.M., Mathieu V., Deltour L. et al. Tumor cells secrete galectin-1 to enhance endothelial cell activity. Cancer Res. 2010;70(15):6216–6224. DOI: 10.1158/0008-5472.CAN-09-4150.
49. Курносенко А.В., Рейнгардт Г.В., Полетика В.С., Колобовникова Ю.В., Уразова О.И. Связь галектинов-1 и -3 с проангиогенными факторами и дисфункцией эндотелия при раке толстой кишки. Казанский медицинский журнал. 2024;(4):551–559. DOI: 10.17816/KMJ623114.
50. Ozawa K., Kondo T., Hori O., Kitao Y., Stern D.M., Eisenmenger W. et al. Expression of the oxygen-regulated protein ORP150 accelerates wound healing by modulating intracellular VEGF transport. J. Clin. Invest. 2001;108(1):41–50. DOI: 10.1172/JCI11772.
51. Markowska A.I., Liu F.T., Panjwani N. Galectin-3 is an important mediator of VEGF- and bFGF-mediated angiogenic response. J. Exp. Med. 2010;207(9):1981–1993. DOI: 10.1084/jem.20090121.
52. Lagana A., Goetz J.G., Cheung P., Raz A., Dennis J.W., Nabi I.R. Galectin binding to Mgat5-modified N-glycans regulates fibronectin matrix remodeling in tumor cells. Mol. Cell Biol. 2006;26(8):3181–3193. DOI: 10.1128/MCB.26.8.3181-3193.2006.
53. Jung T.Y., Jung S., Ryu H.H., Jeong Y.I., Jin Y.H., Jin S.G. et al. Role of galectin-1 in migration and invasion of human glioblastoma multiforme cell lines. J. Neurosurg. 2008;109(2):273–284. DOI: 10.3171/JNS/2008/109/8/0273.
54. Huang Y., Wang H.C., Zhao J., Wu M.H., Shih T.C. Immunosuppressive roles of galectin-1 in the tumor microenvironment. Biomolecules. 2021;11(10):1398. DOI: 10.3390/biom11101398.
55. Fortin S., Le Mercier M., Camby I., Spiegl-Kreinecker S., Berger W., Lefranc F. et al. Galectin-1 is implicated in the protein kinase C epsilon/vimentin-controlled trafficking of integrin-beta1 in glioblastoma cells. Brain Pathol. 2010;20(1):39– 49. DOI: 10.1111/j.1750-3639.2008.00227.x.
56. Camby I., Belot N., Lefranc F., Sadeghi N., de Launoit Y., Kaltner H. et al. Galectin-1 modulates human glioblastoma cell migration into the brain through modifications to the actin cytoskeleton and levels of expression of small GTPases. J. Neuropathol. Exp. Neurol. 2002;61(7):585–596. DOI: 10.1093/jnen/61.7.585.
57. Al-Koussa H., Atat O.E., Jaafar L., Tashjian H., El-Sibai M. The Role of Rho GTPases in motility and invasion of glioblastoma cells. Anal. Cell. Pathol. (Amst.). 2020;2020:9274016. DOI: 10.1155/2020/9274016.
58. Chen C., Duckworth C.A., Zhao Q., Pritchard D.M., Rhodes J.M., Yu L.G. Increased circulation of galectin-3 in cancer induces secretion of metastasis-promoting cytokines from blood vascular endothelium. Clin. Cancer Res. 2013;19(7):1693– 704. DOI: 10.1158/1078-0432.CCR-12-2940.
59. Macke A.J., Pachikov A.N., Divita T.E., Morris M.E., LaGrange C.A., Holzapfel M.S. et al. Targeting the ATF6-mediated ER stress response and autophagy blocks integrin-driven prostate cancer progression. Mol. Cancer Res. 2023;21(9):958–974. DOI: 10.1158/1541-7786.MCR-23-0108.
60. Marhuenda E., Fabre C., Zhang C., Martin-Fernandez M., Iskratsch T., Saleh A. et al. Glioma stem cells invasive phenotype at optimal stiffness is driven by MGAT5 dependent mechanosensing. J. Exp. Clin. Cancer Res. 2021;40(1):139. DOI: 10.1186/s13046-021-01925-7.
Review
For citations:
Serebryakova V.A., Golovina E.L., Meleshko M.V., Vaizova O.E. Galectin-1 and -3: intracellular pathways of signal transduction in carcinogenesis (lecture). Bulletin of Siberian Medicine. 2025;24(4):184-193. (In Russ.) https://doi.org/10.20538/1682-0363-2025-4-184-193
JATS XML









































