Preview

Bulletin of Siberian Medicine

Advanced search

Factors of angiogenesis in the development of physiological and pathological processes of the female gonads

https://doi.org/10.20538/1682-0363-2016-4-111-119

Abstract

The literature review focuses on the role of various growth factors in the developing vasculature of the ovary. Vascularization plays an important role in physiological processes such as development and atresia of a follicle, the formation of the yellow body and the pathological: ovarian hyperstimulation syndrome, the formation of follicular cysts, the development of cystic ovaries, endometriosis, dysfunctional uterine bleeding. The main angiogenic factor identified vascular endothelial growth factor, participates independently and through the mediating factors in baryogenesis, which plays an important role in endothelial cell differentiation and development of vascular pattern, stimulating endothelial proliferation, migration and survival of extravascular cells of the ovary. Angiogenic activity in the ovary is also under the control of other growth factors: fibroblast growth factor, epidermal growth factor, platelet growth factor, insulin-like growth factor-1 and cytokines such as tumor necrotic factor, interleukins, components of the extracellular matrix (laminin, fibronectin) and their receptors (integrins), matrix metalloproteinases and their tissue inhibitors and regulators, proteases (plasminogen, activators urokinase and urokinase tissue type), as well as hypoxia, hypoglycemia and stress. Presents different points of view on the problem of vasculogenesis in the female gonad, as well as directions for future fundamental and practical research.

About the Author

V. G. Zenkina
Pacific State Medical University 2, Av. Ostruakova,Vladivostok, 690950, Russian Federation
Russian Federation

PhD, Associate Professor, Head of the Department of Biology, Botany and Ecology, Pacific State Medical University, Vladivostok, Russian Federation



References

1. Volkova O.V., Bicherova I.A.. Demjashkin G.A. Faktory rosta i ih znachenie v processah reprodukcii [Faktory rosta i ih znachenie v processah reprodukcii] // Fundamental’nye issledovanija – Fundamental research. 2006; 5: 82–83 (in Russian).

2. Zenkina V.G., Karedina V.S. Dejstvie pishhevyh dobavok «Tingol−1» i «Tingol−2» na jaichniki krys [The effect of food additives “Thingol−1” and “Thingol−2” on the ovaries of rats] // Tihookeanskij medicinskij zhurnal – Pacific medical journal. 2003; 4: 35−36 (in Russian).

3. Zenkina V.G., Solodkova O.A. Ovarial’nyj rezerv zhenshhin g. Vladivostoka v pozdnem reproduktivnom periode [Ovarian reserve of women of Vladivostok in the late reproductive period] // Fundamental’nye issledovanija – Fundamental research. 2014; 4: 76–80 (in Russian).

4. Galeati G., Spinaci M., Govoni N. Stimulatory effects of fasting on vascular endothelial growth factor (VEGF) production by growing pig ovarian follicles // Reproduction. 2003; 5: 647–652.

5. Zenkina V.G. Morfologicheskie osobennosti jaichnikov plodov i novorozhdennyh [Morphological features of the ovaries of fetuses and newborns] // Fundamental’nye issledovanija – Fundamental research. 2014; 7 (3): 504– 508 (in Russian).

6. Kargalova E.P., Kacuk L.N., Larjushkina A.V. Gistohimicheskaja harakteristika kapilljarov jaichnikov krys pri vvedenii zhenskih polovyh gormonov [Histochemical characteristics of the capillaries of ovaries in rats when administered female sex hormones] // Tihookeanskij medicinskij zhurnal – Pacific medical journal. 2007; 4: 53–55 (in Russian).

7. Kargalova E.P., Kacuk L.N., Larjushkina A.V. Funkcional’naja morfologija kapilljarnogo rusla jaichnikov posle vvedenija zhenskih polovyh gormonov [Functional morphology of capillary bed of the ovaries after administration of female sex hormones] // Angiologija i sosudistaja hirurgija – Angiology and vascular surgery. 2012; 18: 22 (in Russian).

8. Burlev V.A., Zajdieva Z.S., Il’jasova N.A. Reguljacija angiogeneza gestacionnogo perioda (obzor literatury) [Angiogenesis gestational period (literature review)] // Problemy reprodukcii – Probl. Reprod. 2008; 3: 18–22 (in Russian).

9. Burlev V.A. Vospalitel’nyj stress: sistemnyj angiogenez, belki ostroj fazy i produkty destrukcii tkanej u bol’nyh hronicheskim recidivirujushhim sal’pingooforitom [Inflammatory stress: systemic angiogenesis, acute phase proteins and the products of destruction of tissue in patients with chronic recurrent salpingo-oophoritis] // Problemy reprodukcii – Probl. Reprod. 2011; 5: 25–32 (in Russian).

10. Zenkina V.G. Znachenie apoptoza v jaichnikah pri razvitii nekotoryh zabolevanij reproduktivnoj sistemy [The importance of apoptosis in ovaries during the development of some diseases of the reproductive system] // Fundamental’nye issledovanija – Fundamental research. 2011; 6: 227–230 (in Russian).

11. Fátima L.A., Evangelista M.C., Silva R.S. et al. FSH up-regulates angiogenic factors in luteal cells of buffaloes // Domest. Anim. Endocrinol. 2013; 45 (4): 224– 237.

12. Bukovsky A. Sex steroid-mediated reprogramming of vascular smooth muscle cells to stem cells and neurons: possible utilization of sex steroid combinations for regenerative treatment without utilization of in vitro developed stem cells // Cell Cycle. 2009; 8 (24): 4079–4084.

13. Abramovich D., Irusta G., Bas D. et al. Angiopoietins/ TIE2 system and VEGF are involved in ovarian function in a DHEA rat model of polycystic ovary syndrome // Endocrinology. 2012; 153 (7): 3446–3456.

14. Strizhakov A.N., Pirogova M.N., Shahlamova M.N. i dr. Rol’ sosudisto- jendotelial’nogo faktora rosta i ego receptorov v ovarial’nom angiogeneze i apopleksii jaichnika [Role of vascular endothelial growth factor and its receptors in ovarian angiogenesis and apoplexy of the ovary] // Voprosy ginekologii, akusherstva i perinatologii – Vopr. gynecol., obstetrics and perinatology. 2014; 5: 40–47 (in Russian).

15. Brown H.M., Russell D.L. Blood and lymphatic vasculature in the ovary: development, function and disease // Hum. Reprod. Update. 2014; 20 (1): 29–39.

16. Delli Carpini J., Karam A.K., Montgomery L. Vascular endothelial growth factor and its relationship to the prognosis and treatment of breast, ovarian, and cervical cancer // Angiogenesis. 2010; 13 (1): 43–58.

17. Herr D., Bekes I., Wulff C.. Regulation of endothelial permeability in the primate corpora lutea: implications for ovarian hyperstimulation syndrome // Reproduction. 2015; 149 (2): 71–79.

18. Abdel-Ghani M.A., Shimizu T., Suzuki H. Expression pattern of vascular endothelial growth factor in canine folliculogenesis and its effect on the growth and development of follicles after ovarian organ culture // Reprod. Domest. Anim. 2014; 49 (5): 734–743.

19. Chouhan V.S., Dangi S.S., Gupta M. et al. Stimulatory effect of vascular endothelial growth factor on progesterone production and survivability of cultured bubaline luteal cells // Anim. Reprod. Sci. 2014; 148 (3–4): 251– 259.

20. Hazzard T.M, Stouffer R.L. Angiogenesis in ovarian follicular and luteal development // Baillieres Best Pract. Res. Clin. Obstet. Gynaecol. 2000; 14 (6): 883–900.

21. Kuwabara Y., Katayama A., Tomiyama R. et al. Gonadotropin regulation and role of ovarian osteopontin in the periovulatory period // J. Endocrinol. 2015; 224 (1): 49– 59.

22. Rico C., Dodelet-Devillers A., Paquet M. et al. HIF1 activity in granulosa cells is required for FSH-regulated Vegfa expression and follicle survival in mice // Biol. Reprod. 2014; 90 (6): 135.

23. Uniyal S., Panda R.P., Chouhan V.S. et al. Expression and localization of insulin-like growth factor system in corpus luteum during different stages of estrous cycle in water buffaloes (Bubalus bubalis) and the effect of insulin-like growth factor I on production of vascular endothelial growth factor and progesterone in luteal cells cultured in vitro // Theriogenology. 2015; 83 (1): 58–77.

24. Wang J., Shi M., Xi Y. et al. Recombinant human vascular endothelial growth factor receptor 1 effectively inhibits angiogenesis in vivo // Mol. Med. Rep. 2015; 11 (5): 3432–3438.

25. Zhu G., Chen X., Mao Y. et al. Characterization of annexin A2 in chicken follicle development: Evidence for its involvement in angiogenesis // Anim. Reprod. Sci.2015; 161: 104–111.

26. Coppola F., Ferrari B., Barusi L. et al. Follicular fluid levels of vascular endothelial growth factor and early corpus luteum function during assisted reproductive technology cycles // J. Exp. Clin. Assist. Reprod. 2005; 30: 2–13.

27. Gutman G., Barak V., Maslovitz S. et al. Regulation o f vascular endothelial growth factor-A and its soluble receptor sFlt-1 by luteinizing hormone in vivo: implication for ovarian follicle angiogenesis // Fertil. Steril. 2008; 89 (4): 922– 926.

28. Pavlovich S.V., Burlev V.A. Sosudisto-jendotelial’nyj faktor rosta v patogeneze sindroma giperstimuljacii jaichnikov [Vascular endothelial growth factor in the pathogenesis of ovarian hyperstimulation syndrome] // Akusherstvo i ginekologija – Obstetrics and gynecology. 2004; 2: 11–13 (in Russian).

29. Abir R., Ao A., Zhang X.Y. et al. Vascular endothelial growth factor A and its two receptors in human preantral follicles from fetuses, girls, and women // Fertil. Steril. 2010; 93 (7): 2337–2384.

30. Chuderland D., Ben-Ami I., Bar-Joseph H., Shalgi R. Role of pigment epithelium- derived factor in the reproductive system // Reproduction. 2014; 148 (4): 53–61.

31. Meidan R., Klipper E., Zalman Y., Yalu R. The role of hypoxia-induced genes in ovarian angiogenesis // Reprod. Fertil. Dev. 2013; 25 (2): 343–350.

32. Ferrara N. Vascular endothelial growth factor and the regulation of angiogenesis // Recent Prog. Horm. Res. 2000; 55: 15–35.

33. Wiles J.R., Katchko R.A., Benavides E.A. et al. The effect of leptin on luteal angiogenic factors during the luteal phase of the estrous cycle in goats // Anim. Reprod. Sci. 2014; 148 (3–4): 121–129.

34. Mutlag A.M., Wang X., Yang Z. et al. Study on matrix metalloproteinase 1 and 2 gene expression and NO in dairy cows with ovarian cysts // Anim. Reprod. Sci. 2015; 152: 1–7.

35. McFee R.M., Cupp A.S. Vascular contributions to early ovarian development: potential roles of VEGFA isoforms // Reprod. Fertil. Dev. 2013; 25 (2): 333–342.

36. Sidibй A., Polena H., Pernet-Gallay K. et al. VE-cadherin Y685F knock-in mouse is sensitive to vascular permeability in recurrent angiogenic organs // Am. J. Physiol. Heart Circ. Physiol. 2014; 307 (3): 455–463.

37. Bellian J., Thuillez C., Joannides R. Contribution of endothelium-derived hyperpolarizing factors to the regulation of vascular tone in humans // Fundam. Clin. Pharmacol. 2008; 22: 363–377.

38. Chuderland D., Ben-Ami I., Kaplan-Kraicer R. et al. Hormonal regulation of pigment epithelium-derived factor (PEDF) in granulosa cells // Mol. Hum. Reprod. 2013; 19 (2): 72–81.

39. Luo H., Li B., Li Z. et al. Chaetoglobosin K inhibits tumor angiogenesis through downregulation of vascular epithelial growth factor-binding hypoxia-inducible factor 1α // Anticancer Drugs. 2013; 24 (7): 715–724.

40. Tamanini C., De Ambrogi M. Angiogenesis in developing follicle and corpus luteum // Reprod. Domest. Anim. 2004; 39 (4): 206–216.

41. Vera C., Tapia V., Vega M., Romero C. Role of nerve growth factor and its TRKA receptor in normal ovarian and epithelial ovarian cancer angiogenesis // J. Ovarian Res. 2014; 10: 7–82.

42. Stanek M.B., Borman S.M., Molskness T.A. et al. Insulin and insulin-like growth factor stimulation of vascular endothelial growth factor production by luteinized granulosa cells: comparison between polycystic ovarian syndrome (PCOS) and non-PCOS women // J. Clin. Endocrinol. Metab. 2007; 92 (7): 2726–2733.

43. Zhang Z., Pang X., Tang Z. et al. Overexpression of hypoxia-inducible factor prolyl hydoxylase-2 attenuates hypoxia- induced vascular endothelial growth factor expression in luteal cells // Mol. Med. Rep. 2015; 12 (3): 3809–3814.

44. Clapp C., Thebault S., Macotela Y. et al. Regulation of blood vessels by prolactin and vasoinhibins // Adv. Exp. Med. Biol. 2015; 846: 83–95.

45. Artini P.G., Cristello F., Monti M. et al. Vascular endothelial growth factor and its soluble receptor in ovarian pathology // Gynecol. Endocrinol. 2005; 21 (1): 50–56.

46. Davis J.S., Rueda B.R., Spanel-Borowski K. Microvascular endothelial cells of the corpus luteum // Reprod. Biol. Endocrinol. 2003; 10: 89.

47. Herr D., Fraser H.M., Konrad R. et al. Human chorionic gonadotropin controls luteal vascular permeability via vascular endothelial growth factor by down- regulation of a cascade of adhesion proteins // Fertil. Steril. 2013: 99 (6): 1749– 1758.

48. Kata Osz, Michelle Ross, Jim Petrik. The thrombospondin-1 receptor CD36 is an important mediator of ovarian angiogenesis and folliculogenesis // Reprod. Biol. Endocrinol. 2014; 14: 12–21.

49. Shirasuna K., Kobayashi A., Nitta A. et al. Possible action of vasohibin-1 as an inhibitor in the regulation of vascularization of the bovine corpus luteum // Reproduction.2012; 143 (4): 491–500.

50. Duncan W.C., Nio-Kobayashi J. Targeting angiogenesis in the pathological ovary // Reprod. Fertil. Dev. 2013; 25 (2): 362–371.


Review

For citations:


Zenkina V.G. Factors of angiogenesis in the development of physiological and pathological processes of the female gonads. Bulletin of Siberian Medicine. 2016;15(4):111-119. (In Russ.) https://doi.org/10.20538/1682-0363-2016-4-111-119

Views: 1343


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)