Cellular reactions to three-dimensional matrices of polylactic acid and hydroxyapatite generated by 3D-printing
https://doi.org/10.20538/1682-0363-2016-5-16-29
Abstract
The purpose of this study is to estimate Ex vivo physicochemical and biological features of three-dimensional (3D) biodegradable matrices “polylactic acid/calcium phosphates” (hereafter 3D composites) designed with the help of additive technologies (3D printing) as potential materials for bone tissue regeneration.
Materials and methods. Experimental samples (disks 1,2–1,6 mm thick, and 11 mm or 8 mm in diameter) of composite biodegradable 3D matrices (hereafter 3D composites) have been produced from initial mixture of 95 mas% polylactic acid (PLA) and 5 mas% hydroxyapatite (HAP). Computer-aided design method, Blender software and fused filament fabrication (FFF; fiber diameter 1,75 mm) with 3D printing were used in sample production. 100 mas% PLA disks served as control. One of the sample surfaces was textured with 0,3–0,5 mm wide grooves. Physicochemical properties of 11 mm disks (geometry, mass, morphology, roughness, electrostatic voltage, surface wettability, and element composition) were studied. Biological trials included the evaluation of 24-hour cytotoxicity of 8 mm samples in culture of mononuclear leukocytes of a healthy volunteer or human Jurkat T cell leukemia-derived cell line (hereafter Jurkat T cells). Moreover, osteogenic potential of 11 mm disks was determined in 21-day culture of human adipose-derived multipotent mesenchymal stem cells (AMMSCs) be means of osteocalcin secretion and intercellular matrix mineralization visualized by alizarin red S staining.
Results. The features of PLA-HAP 3D composites generated by 3D printing correspond to physicochemical parameters which are crucial for bone tissue recovery. In case of small amount of calcium and phosphorus they facilitated ex vivo mineralization of extracellular matrix formed in AMMSCs culture. The number of died (by necrosis, mainly) leukemic Jurkat T cells but not mononuclear leukocytes of a health volunteer increased to 9–10% in 24-hour in vitro contact with PLA-HAP 3D composites unlike PLA samples alone.
Conclusion. Polar reaction of tumor and normal cells to PLA-HAP samples in case of increasing amount of calcium phosphates in 3D-composite may be valuable for the development of new materials used for osteosynthesis of fractures and endoprosthesis in patients with hematological malignancies.
About the Authors
T. V. DruzhininaRussian Federation
PhD, Researcher,
5/2, Schukinskaya Str., Moscow, 123182
S. Ya. Talalaev
Russian Federation
Deputy Director for Science,
5/2, Schukinskaya Str., Moscow, 123182
N. P. Zakirov
Russian Federation
First Deputy Director,
5/2, Schukinskaya Str., Moscow, 123182
S. V. Shchadenko
Russian Federation
Head of Laboratory Medical Eelectronics, 2, Moscow Trakt, Tomsk, 634050;
Assistant, Department of Industrial and Medical Electronics, 30, Lenina Av., Tomsk, 634050
Sh. A. Khabibulin
Russian Federation
PhD, Engineer Control Center Research Equipment,
30, Lenina Av., Tomsk, 634050
I. A. Khlusov
Russian Federation
MD, Professor, Department of Morphology and General Pathology, 2, Moscow Trakt, Tomsk, 634050
Department of Experimental Physics, Tomsk Polytechnic University, 30, Lenina Av., Tomsk, 634050;
Head of Bioconstructor-S Ltd., 31, Sibirskaya Str., Tomsk, 634061
L. S. Litvinova
Russian Federation
MD, Нead of Laboratory Immunology and Cell Biotechnologie,
14A, Nevskyi Str., Kaliningrad, 236041
References
1. Volova T.G. Polyhydroxyalkanoates – Plastic materials of the 21st century: production, properties, application. NY: Nova Science Pub., 2004. 282 p.
2. Eling B., Gogolewski S., Pennings A.J. Biodegradable materials of poly(l-lactic acid): 1. Meltspun and solution spun fibers // Polymer. 1982; 23: 1587–1593.
3. Jukkala-Partio K., Laitinen O., Vasenius J., Partio E.K., Toivonen T., Tervahartiala P., Kinnunen J., Rokkanen P. Healing of subcapital femoral osteotomies fixed with self-reinforced poly-Llactide screws. An experimental long-term study in sheep // Arch. Orthop. Trauma Surg. 2022; 122: 360–364.
4. Zagorodnii N.V., Korolev A.V., Ahpashev A.A., Gnelitsa N.N., Ilyin D.O., Khasanshin M.M., Liagin A.S. Povedenie implantatov v kostnoi tkani v hfzlichnye sroki soglasno MRT-issledovaniyu [Implants behavior in bone tissue at different periods according to MRT investigation]. Available at: http://www.lechenie-sustavov.ru/patient/articles/povedenie-implantatov-v-kostnoj-tkani-vrazlichnye-sroki-soglasno-mrt-issledovaniyu/(in Russian).
5. Shishatskaya E.I., Khlusov I.A., Volova T.G. A hybrid PHB-hydroxyapatite composite for biomedical application: production, in vitro and in vivo investigation //J. Biomater. Sci. Polymer Edn. 2006; 17 (5): 481–498.
6. Tverdokhlebov S.I., Bolbasov E.N. , Shesterikov E.V., Antonova L.V., Golovkin A.S., Matveeva V.G., Petlin D.G., Anissimov Y.G. Modification of polylactic acid surface using RF plasma discharge with sputter deposition of a hydroxyapatite target for increased biocompatibility // Appl. Surf. Sci. 2015; 329: 32–39.
7. Chaikina M.V., Uvarov N.F., Ulihin A.S., Khlusov I.A. Mechanochemical synthesis of nanosized functional materials with the apatite-type structure // Problems of Materials Science. 2008; 54 (2): 219–232.
8. Khlusov I.A., Karlov A.V., Soukhodolo I.V. Genez kostnoi tkani na poverhnosti implantatov dlya osteosinteza [Bone tissue genesis on the surface of the implants for osteosynthesis] // Genii ortopedii, Genius of Orthopedics, 2003; 3: 16–26 (in Russian).
9. Khlusov I.A., Sharkeev Yu. P., Pichugin V.F., Legostaeva E.V., Litvinova L.S., Shupletsova V.V., Sokhonevich N.A., Khaziakhmatova O.G., Khlusova M.Yu., Gutor S.S., Tolkacheva T.V. Influence of the Structure of the Titanium Oxide Coating Surface on Immunocompetent Tumor Cells // Russian Physics Journal. 2016; 58 (11): 1527–1533.
10. Bykova Iu., Weinhardt V., Kashkarova A., Lebedev S., Baumbach T., Pichugin V., Zaitsev K., Khlusov I. Physical properties and biocompatibility of UHMWPE-derived materials modified by synchrotron radiation // J. Mater. Sci: Mater Med. 2014; 25 (8): 1843–1852. doi: 10.1007/s10856-014-5222-4.
11. Owens D.K., Wendt R.C. Estimation of the surface free energy of polymers // J. Appl. Polym. Sci. 1969; 13: 1741–1747.
12. Kfoury Y., David T., Scadden D.T. Mesenchymal cell contributions to the stem cell niche // Cell Stem Cell. 2015; 16: 239–253.
13. Steward A.J., Liu Y., Wagner D.R. Engineering cell attachments to scaffolds in cartilage tissue engineering // Biomater. Regen. Med. Eng. 2011; 63: 74–82.
14. Khlusov I.A., Karlov A.V., Sharkeev Yu.P., Pichugin V.F., Kolobov Yu.R., Shashkina G.A., Ivanov M.B., Legostaeva E.V., Sukhikh G.T. Osteogenic potential of mesenchymal stem cells from bone marrow in situ: role of physicochemical properties of artificial surfaces // Bull. Exp. Biol. Med. 2005; 140 (1): 144–152.
15. Tverdokhlebov S.I., Stankevich K. S. , Bolbasov E. N. , Khlusov I. A., Kulagina I. V. , Zaytsev K. V. Nonwoven polylactide scaffolds obtained by solution blow spinning and the in vitro degradation dynamics // Advanced Materials Research. 2014; 872: 257–263.
16. Khlusov I.A., Khlusova M.Y., Pichugin V.F., Sharkeev Y.P., Legostaeva E.V. Artificial Niches for Stromal Stem Cells as a Potential Instrument for the Design of the Surface of Biomimetic Osteogenic Materials // Russian Physics Journal. 2014; 56 (10): 1206–1211.
17. Hallab N.J., Bundy K.J., O’Connor K., Moses R.L., Jacobs J.J. Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion // Tissue Eng. 2001; 7: 55–71.
18. Biomaterials science: an introduction to materials in medicine. 2nd edition / Eds. B.D. Ratner, A.S. Hoffman, F.J. Schoen, & J.E. Lemons. San Diego: Elsevier Academic Press, 2004; 851 p.
19. Goldberg E.D., Digai A.M., Khlusov I.A. Rol vegetativnoi nervnoi sistemi v regulyacii gemopoeza [The role of autonomous nervous system in hemopoiesis regulation]. Tomsk, 1997. 218 p. (in Russian).
20. Stevens M.J., Donato L..J, Lower S.K., Sahai N. Oxide-dependent adhesion of the Jurkat line of T lymphocytes // Langmuir. 2009; 25 (11): 6270–6278. doi: 10.1021/la8040192.
21. Terui Y., Ikeda M., Tomizuka H., Kasahara T., Ohtsuki T., Uwai M., Mori M., Itoh T., Tanaka M., Yamada M., Shimamura S., Ishizaka Y., Ikeda K., Ozawa K., Miura Y., Hatake K. Activated endothelial cells induce apoptosis in leukemic cells by endothelial interleukin-8 // Blood. 1998; 92 (8): 2672–2680.
22. Khlusov I.A., Surmeneva M.A., Surmenev R.A., Ryazantseva N.V., Savelieva O.E., Ivanova A.A., Prokhorenko T.S., Tashireva L.A., Dvornichenko M.V., Pichugin V.F. Kletochno-molekulyarnye aspekty immunologicheskoi sovmestimosti implantatov s nanostrukturnym kalciiphosphatnym pokrytiem [Cellular and molecular aspects of immunologic compatibility of implants with nanostructured calcium phosphate coating] // Biulleten sibirskoi meditsiny – Bulletin of Siberian Medicine, 2012; 4: 78–85 (in Russian).
23. Khlusov I.A., Litvinova L.S., Shupletsova V.V., Dunets N.A., Khaziakhmatova O.G., Yurova K.A., Khlusova M.Yu., Sharkeev Yu.P. Morphofunctional changes of Jurkat line lymphoblasts at short-term contact with relief calcium phosphate surface // Cell and Tissue Biology. 2017; 11 (1) (in press) (in Russian).
24. Oreffo R.O.C., Driessens F.C.M., Planell J.A., Triffitt J.T. Growth and differentiation of human bone marrow osteoprogenitors on novel calcium phosphate cements // Biomaterials. 1998; 19: 1845–1854.
25. Kolf C.M., Cho E., Tuan R.S. Mesenchemal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation // Arthritis Res. Ther. 2007; 9: 204–219.
26. Riggs B.L., Melton III L.J. Osteoporosis. Etiology, diagnosis, and management, second edn. Lippincott-Raven Publ., Philadelphia, New York, 1996 (Russ. ed.: Riggs B.L., Melton L.D. Osteoporoz: per. s angl. SPb.,ZAO Izdatelstvo BINOM Publ., Nevskii dialect Publ., 2000; 560 p.) (in Russian).
27. Kim H.M., Miyaji F., Kokubo T., Nakamura T. Bonding strength of bonelike apatite layer to Ti metal substrate // J. Biomed. Mater. Res. 1997; 38: 121–127.
28. Khlusov I.A., Shevtsova N.M., Khlusova M.Y. Detection in vitro and quantitative estimation of artificial microterritories which promote osteogenic differentiation and maturation of stromal stem cells // Methods Mol. Biol. 2013; 1035: 103–119. doi: 10.1007/978-1-62703-508-8_9.
29. Damien C.J., Ricci J.L., Christel P., Alexander H., Patat J.L. Formation of a calcium phosphate-rich layer on absorbable calcium carbonate bone graft substitutes // Calcif Tissue Int. 1994; 55: 151–158.
30. Fisher D.E. Apoptosis in cancer therapy: crossing the threshold // Cell. 1994; 78: 539–542.
Review
For citations:
Druzhinina T.V., Talalaev S.Ya., Zakirov N.P., Shchadenko S.V., Khabibulin Sh.A., Khlusov I.A., Litvinova L.S. Cellular reactions to three-dimensional matrices of polylactic acid and hydroxyapatite generated by 3D-printing. Bulletin of Siberian Medicine. 2016;15(5):16-29. (In Russ.) https://doi.org/10.20538/1682-0363-2016-5-16-29