Preview

Bulletin of Siberian Medicine

Advanced search

Role of potassium conductance in mechanisms of exrtacellular atp impact on the contractive activity of vascular smooth muscle cells

https://doi.org/10.20538/1682-0363-2016-5-105-112

Abstract

The purpose of this work is to study the influence of extracellular ATP (adenosine-3-phosphate), which is an activator of purinergic receptors, on contractive activity of rat aortic ring segments precontracted by α1-adrenoreceptors activation with phenylephrine and evaluate the impact of potassium channels of plasma membrane on mechanisms of ATP activity.

Material and methods. Contractive activity of vascular smooth muscle cells was studied using the method of Organ Bath Myography applied to the thoracic aorta segments in male Wistar rats both with intact and removed endothelium. ATP (1–1000 mM) produced a dose-dependent relaxing effect on intact and endothelium-denuded segments precontracted with phenilephrine. To assess the impact of potassium channels on mechanisms of ATP activity we used tetraethylammonium (10 mM), a nonselective potassium-channel blocker, glibenclamide (10 mM), the blocker of ATP-sensitive potassium channels and 4-aminopiridine, a blocker of voltage-gated potassium channels.

Conclusion. Our study has shown that the impact of ATP on segments with intact endothelium depends on the ATP-sensitive potassium channels whereas the impact of ATP on endothelium-denuded aortic segments depends on both ATP-sensitive and voltage-gated potassium channels. 

About the Authors

S. N. Orlov
Siberian State Medical University; Lomonosov Moscow State University
Russian Federation

DBSс, Professor, Research Officer, 2, Moscow Trakt, Tomsk, 634050;

Professor, 1, Leninskiye Goru, Moscow, 119991



L. V. Smagliy
Siberian State Medical University
Russian Federation

PhD, Associate Professor, Department of Biophysics and Functional Diagnostics,

2, Moscow Trakt, Tomsk, 634050



S. V. Gusakova
Siberian State Medical University
Russian Federation

MD, the Chief of Department of Biophysics and Functional Diagnostics,

2, Moscow Trakt, Tomsk, 634050



V. S. Rydchenko
Siberian State Medical University
Russian Federation

Postgraduate Student, Department of Biophysics and Functional Diagnostics,

2, Moscow Trakt, Tomsk, 634050



Yu. G. Birulina
Siberian State Medical University
Russian Federation

Assistant Department of Biophysics and Functional Diagnostics,

2, Moscow Trakt, Tomsk, 634050



A. N. Baikov
Siberian State Medical University
Russian Federation

MD, Нead of Central Research Laboratory,

2, Moscow Trakt, Tomsk, 634050



V. N. Vasiliyev
Siberian State Medical University
Russian Federation

DBSс, Professor, Department of Physical Culture and Health,

2, Moscow Trakt, Tomsk, 634050



G. A. Sukhanova
Siberian State Medical University
Russian Federation

DBSс, Professor, Biochemistry and Molecular Biology Department,

2, Moscow Trakt, Tomsk, 634050



T. S. Fedorova
Siberian State Medical University
Russian Federation

MD, Professor, Biochemistry and Molecular Biology Department,

2, Moscow Trakt, Tomsk, 634050



T. V. Lasukova
Tomsk State Pedagogical University
Russian Federation

DBSс, Professor, Department of Biomedical Sciences,

60a, Kievskaya Str., Tomsk, 634061



References

1. Burnstock G. Purinergic nerves // Pharmacological reviews. 1972; 24 (3): 509–581.

2. Abbracchio M.P., Burnstock G., Boeynaems J.-M., Barnard E.A., Boyer J.L., Kennedy C., Knight G.E., Fumagalli M., Gachet C., Jacobson K.A., Weisman G.A. International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy // Pharmacological reviews. 2006; 58(3): 281–341. DOI:10.1124/pr.58.3.3

3. Burnstock G. Physiology and pathophysiology of purinergic neurotransmission // Physiological reviews. 2007; 87 (2): 659–797. DOI: 10.1152/physrev.00043.200

4. North R.A., Verkhratsky A. Purinergic transmission in the central nervous system // Pflügers Archiv. 2006; 452 (5): 479–485. DOI: 10.1007/s00424-006-0060-y

5. Pankratov Y., Lalo U., Verkhratsky A., North R.A. Vesicular release of ATP at central synapses // Pflügers Archiv. 2006; 452 (5): 589–597. DOI: 10.1007/s00424-006-0061-x

6. Burnstock G. Unresolved issues and controversies in purinergic signaling // The Journal of physiology. 2008; 586 (14): 3307–3312. DOI: 10.1113/jphysiol.2008.155903

7. Abbracchio M.P., Burnstock G., Verkhratsky A., Zimmermann H. Purinergic signalling in the nervous system: an overview // Trends in neurosciences. 2009; 32 (1): 19–29. DOI: 10.1016/j.tins.2008.10.001

8. Burnstock G. Purine and pyrimidine receptors // Cellular and Molecular Life Sciences. 2007; 64 (12): 1471–1483. DOI: 10.1007/s00018-007-6497-0

9. Burnstock G., Kennedy C. Is there a basis for distinguishing two types of P 2-purinoceptor? // General Pharmacology: The Vascular System. 1985; 16 (5): 433–440.

10. Burnstock G. Purinergic receptors // Journal of theoretical biology. 1976; 62 (2): 491–503. DOI: 10.1038/sj.bjp.0706429

11. Ralevic V., Burnstock G. Receptors for purines and pyrimidines // Pharmacological reviews. 1998; 50 (3): 413–492.

12. Baroja-Mazo A., Barberà-Cremades M., Pelegrín P. The participation of plasma membrane hemichannels to purinergic signaling // Biochimica et Biophysica Acta (BBA)-Biomembranes. 2013; 1828 (1): 79–93. DOI: 10.1016/j.bbamem.2012.01.002

13. Burnstock G. Local mechanisms of blood flow control by perivascular nerves and endothelium // Journal of hypertension. Supplement: official journal of the International Society of Hypertension. 1990; 8 (7): S95–106.

14. Burnstock G., Ralevic V. Purinergic signaling and blood vessels in health and disease // Pharmacological reviews. 2014; 66 (1): 102–192. DOI: 10.1124/pr.113.008029

15. Aoki K., Zubkov A.Y., Parent A.D., Zhang J.H. Mechanism of ATP-induced [Ca2+] i mobilization in rat basilar smooth muscle cells // Stroke. 2000; 31 (6): 1377–1385. DOI: 10.1161/01.STR.31.6.1377

16. Koltsova S.V., Maximov G.V., Kotelevtsev S.V., Lavoie J.L., Tremblay J., Grygorczyk R., Hamet P., Orlov S.N. Myogenic tone in mouse mesenteric arteries: evidence for P2Y receptor-mediated, Na+ , K+ , 2Cl−cotransport-dependent signaling // Purinergic Signalling. 2009; 5: 343–349. DOI 10.1007/s11302-009-9160-4

17. da Silva C.G., Specht A., Wegiel B., Ferran C., Kaczmarek E. Mechanism of purinergic activation of endothelial nitric oxide synthase in endothelial cells // Circulation. 2009; 119 (6): 871–879. DOI: 10.1161/CIRCULATIONAHA.108.764571

18. Raqeeb A., Sheng J., Ao N., Braun A.P. Purinergic P2Y2 receptors mediate rapid Ca 2+ mobilization, membrane hyperpolarization and nitric oxide production in human vascular endothelial cells // Cell calcium. 2011; 49 (4): 240–248. DOI: 10.1016/j.ceca.2011.02.008

19. Schuchardt M., Tolle M., van der Giet M. P2Y purinoceptors as potential emerging therapeutical target in vascular disease // Current pharmaceutical design. 2012; 18 (37): 6169–6180. DOI: 10.2174/138161212803582504

20. Buchwalow I.B., Podzuweit T., Bocker W., Samoilova V.E., Thomas S., Wellner M., Baba H.A., Robenek H., Schnekenburger J., Lerch M.M. Vascular smooth muscle and nitric oxide synthase // The FASEB journal. 2002; 16 (6): 500–508. DOI: 10.1096/fj.01-0842com

21. Alioua A. The large conductance, voltage-dependent, and calcium-sensitive K+ channel, Hslo, is a target of cGMP-dependent protein kinase phosphorylation in vivo // Journal of Biological Chemistry. 1998; 273 (49): 32950–32956.

22. Han J., Kim N., Kim E., Ho W.-K., Earm Y.E. Modulation of ATP-sensitive potassium channels by cGMP-dependent protein kinase in rabbit ventricular myocytes // Journal of Biological Chemistry. 2001; 276 (25): 22140–22147. DOI: 10.1074/jbc.M010103200

23. Robertson B.E., Schubert R., Hescheler J., Nelson M.T. cGMP-dependent protein kinase activates Ca-activated K channels in cerebral artery smooth muscle cells // American Journal of Physiology-Cell Physiology. 1993; 265 (1): 299–303.

24. Sheng J. Z., Braun A.P. Small-and intermediate-conductance Ca2+-activated K+ channels directly control agonist-evoked nitric oxide synthesis in human vascular endothelial cells // American Journal of Physiology-Cell Physiology. 2007; 293 (1): 458–467. DOI: 10.1152/ajpcell.00036.2007

25. Strøbaek D., Christophersen P., Dissing S., Olesen S.P. ATP activates K and Cl channels via purinoceptor-mediated release of Ca2+ in human coronary artery smooth muscle // American Journal of Physiology-Cell Physiology. 1996; 271 (5): 1463–1471.

26. Félétou M. Calcium‐activated potassium channels and endothelial dysfunction: therapeutic options? // British journal of pharmacology. 2009; 156 (4): 545–562. DOI: 10.1111/j.1476-5381.2009.00052.x

27. Govindan S., Taylor E.J.A., Taylor C.W. Ca2+ signalling by P2Y receptors in cultured rat aortic smooth muscle cells // British journal of pharmacology. 2010; 160 (8): 1953–1962. DOI: 10.1111/j.1476-5381.2010.00763.x


Review

For citations:


Orlov S.N., Smagliy L.V., Gusakova S.V., Rydchenko V.S., Birulina Yu.G., Baikov A.N., Vasiliyev V.N., Sukhanova G.A., Fedorova T.S., Lasukova T.V. Role of potassium conductance in mechanisms of exrtacellular atp impact on the contractive activity of vascular smooth muscle cells. Bulletin of Siberian Medicine. 2016;15(5):105-112. (In Russ.) https://doi.org/10.20538/1682-0363-2016-5-105-112

Views: 891


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)