Preview

Bulletin of Siberian Medicine

Advanced search

Comparison study of gut microbiota in case of Parkinson’s disease and other neurological disorders

https://doi.org/10.20538/1682-0363-2016-5-113-125

Abstract

Currently the role of microbiota in diseases pathogenesis, its therapeutic and diagnostic potential are of the utmost interest for scientists and medical doctors. Parkinson’s disease is neurodegenerative disorder for which microbiota’s dysbiosis was previously shown.

The main goal of the study is to compare the colon microbiota composition in case of Parkinson’s disease and other neurological pathologies, including idiopathic familial dystonia, essential tremor, multiple sclerosis, multiple system atrophy in order to determine the intestinal flora landscape specific to Parkinson’s disease.

Material and methods. One hundred twenty-six patients, 93 with Parkinson’s disease and 33 with other neurological pathology were examined. For all patients, physical examination and fecal samples collection were performed. Microbiota taxonomic composition was analyzed by sequencing of bacterial 16S rRNA genes followed by bioinformatic and statistical analysis.

As a result of the study, significant differences between groups in microbiota composition were found. Gut microbiota of patients with Parkinson’s disease was characterized by increase of Desulfovibrio piger, Lactobacillus mucosae, Yokenella regensburgei, Alistipes indistinctus, Oscillospira capillosus, Clostridium bolteae, Soleaferrea massiliensis, Butyricimonas virosa, Dorea massiliensis, Victivallis vadensis abundances. Patients with other neurological diseases had increased levels of bacteria belonging to Blautia, Intestinibacter, Coprococcus genera and Anoxystipes fissicatena, Fusobacterium periodonticum, Gemmiger formicilis, Papillibacter cinnamivorans, Roseburia faecis, Lachnoclostridium indolis, Clostridium populeti, Clostridium tertium, Roseburia intestinalis, Eubacterium desmolans, Eubacterium cylindroides, Clostridium clariflavum, Eubacterium eligens, Coprococcus eutactus, Intestinibacter bartlettii species in their gut microbiota.

Consequently, gut microbiota in case of Parkinson’s disease was different from the microbiota of patients with other neurological diseases, including neuroinflammatory and neurodegenerative disorders, in terms of taxonomic diversity and composition. 

About the Authors

V. A. Petrov
Siberian State Medical University
Russian Federation

Junior Researcher, Central Research Laboratory,

2, Moscow Trakt, Tomsk, 63405



V. M. Alifirova
Siberian State Medical University
Russian Federation

MD, Professor, Head of the Neurology and Neurosurgery Department,

2, Moscow Trakt, Tomsk, 63405



I. V. Saltykova
Siberian State Medical University
Russian Federation

PhD, Researcher, Central Research Laboratory,

2, Moscow Trakt, Tomsk, 63405



I. A. Zhukova
Siberian State Medical University
Russian Federation

PhD, Associate Professor, Neurology and Neurosurgery Department,

2, Moscow Trakt, Tomsk, 63405



N. G. Zhukova
Siberian State Medical University
Russian Federation

MD, Professor, Neurology and Neurosurgery Department,

2, Moscow Trakt, Tomsk, 63405



Yu. B. Dorofeeva
Siberian State Medical University
Russian Federation

Junior Researcher, Central Research Laboratory,

2, Moscow Trakt, Tomsk, 63405



A. V. Tyakht
Research Institute of Physico-Chemical Medicine of Russian Federal Medico-Biological Agency (RIPCM)
Russian Federation

PhD, Senior Researcher,

1a, Malaya Pirogovskaya Str., Mosсow, 119992



I. A. Altukhov
Research Institute of Physico-Chemical Medicine of Russian Federal Medico-Biological Agency (RIPCM); Moscow Institute of Physics and Technology (State University)
Russian Federation

Laboratory Researcher, 1a, Malaya Pirogovskaya Str., Mosсow, 119992;

Post-graduate Student, 9, Institutskiy Per., Dolgoprudny, Moscow Region, 141701



E. S. Kostryukova
Research Institute of Physico-Chemical Medicine of Russian Federal Medico-Biological Agency (RIPCM)
Russian Federation

PhD, Head of Laboratory Postgenomics Researchs in Biology,

1a, Malaya Pirogovskaya Str., Mosсow, 119992



M. A. Titova
Siberian State Medical University
Russian Federation

PhD, Associate Professor, Neurology and Neurosurgery Department,

2, Moscow Trakt, Tomsk, 63405



Yu. S. Mironova
Siberian State Medical University
Russian Federation

Post-graduate Student, Neurology and Neurosurgery Department,

2, Moscow Trakt, Tomsk, 63405



O. P. Izhboldina
Siberian State Medical University
Russian Federation

Post-graduate Student,

2, Moscow Trakt, Tomsk, 63405



M. A. Nikitina
Siberian State Medical University
Russian Federation

Post-graduate Student, Neurology and Neurosurgery Department,

2, Moscow Trakt, Tomsk, 63405



T. V. Perevozchikova
Siberian State Medical University
Russian Federation

PhD, Researcher, Central Research Laboratory,

2, Moscow Trakt, Tomsk, 63405



E. A. Fait
Siberian State Medical University
Russian Federation

Junior Researcher, Central Research Laboratory,

2, Moscow Trakt, Tomsk, 63405



A. E. Sazonov
Lomonosov Moscow State University
Russian Federation

MD, Deputy Vice-Rector,

1, Leninskie Gory, Moscow, 119991



References

1. Spasova D.S., Surh C.D. Blowing on embers: commensal microbiota and our immune system // Front Immunol. 2014; 5: 318.

2. Carabotti M., Scirocco A., Maselli M.A., Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems // Ann Gastroenterol. 2015; 28 (2): 203–209.

3. Wang H.X., Wang Y.P. Gut Microbiota-brain Axis // Chin. Med. J. (Engl). 2016; 5th Oct., 129 (19): 2373–80. doi: 10.4103/0366-6999.190667.

4. Khan F., Oloketuyi S.F. A future perspective on neurodegenerative diseases: Nasopharyngeal and gut microbiota // J. App.l Microbiol. 2016; Oct., 14. doi: 10.1111/jam.13327.

5. Miller Diane B., O’Callaghan James P., Biomarkers of Parkinson’s Disease (Pd): Present and Future // Metabolism. 2015; Mar., 64 (301): 40–46. doi: 10.1016/j.metabol.2014.10.030.

6. Maresova P., Klimova B., Novotny M., Kuca K. Alzheimer’s and Parkinson’s Diseases: Expected Economic Impact on Europe-A Call for a Uniform European Strategy // J. Alzheimers. Dis. 2016; Oct., 4; 54 (3): 1123–1133.

7. Scheperjans F., Aho V., Pereira P.A., Koskinen K., Paulin L., Pekkonen E. et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype // Mov Disord. 2015; Mar., 30 (3): 350–358. doi: 10.1002/mds.26069.

8. Keshavarzian A., Green S.J., Engen P.A., Voigt R.M., Naqib A., Forsyth C.B., et al. Colonic bacterial composition in Parkinson’s disease// Mov Disord. 2015; Sep., 30 (10): 1351–1360. doi: 10.1002/mds.26307.

9. Egshatyan L., Kashtanova D., Popenko A., Tkacheva O., Tyakht A., Alexeev D. et al. Gut microbiota and diet in patients with different glucose tolerance// Endocr. Connect. 2016; Jan., 5 (1): 1–9. doi: 10.1530/EC-15-0094.

10. Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K. et al. QIIME allows analysis of high-throughput community sequencing data// Nat. Methods. 2010; May, 7 (5): 335–336. doi: 10.1038/nmeth.f.303.

11. DeSantis, T.Z., P. Hugenholtz, N. Larsen. Greengenes, a

12. chimera-checked 16S rRNA gene database and workbench compatible with ARB// Appl Environ Microbiol. 2006; 72: 5069–5072.

13. Ritari J., Salojärvi J., Lahti L & de Vos WM. Improved taxonomic assignment of human intestinal 16S rRNA sequences by a dedicated reference database // BMC Genomics. 2015; Dec., 12, 16 (1): 1056. doi: 10.1186/s12864-015-2265-y

14. Paulson J.N., Stine O.C., Bravo H.C., Pop M. Differential abundance analysis for microbial marker-gene surveys // Nat Methods. 2013; Dec., 10 (12): 1200–1202. doi: 10.1038/nmeth.2658.

15. Giloteaux L., Goodrich J.K., Walters W.A., Levine S.M., Ley R.E., Hanson M.R. Reduced diversity and altered composition of the gut microbiome in individuals with myalgic encephalomyelitis/chronic fatigue syndrome // Microbiome. 2016; 4 (1): 1.

16. Wright E.K., Kamm M.A., Teo S.M., Inouye M., Wagner J., Kirkwood C.D. Recent advances in characterizing the gastrointestinal microbiome in Crohn’s disease: a systematic review // Inflamm Bowel Dis. 2015; Jun., 2 1(6): 1219–1228. doi: 10.1097/MIB.0000000000000382.

17. Lozupone C.A., Stombaugh J.I., Gordon J.I., Jansson J.K., Knight R. Diversity, stability and resilience of the human gut microbiota // Nature. 2012; Sep., 13, 489 (7415): 220–230. doi: 10.1038/nature11550

18. Jeraldo P., Hernandez A., Nielsen H.B., Chen X., White B.A., Goldenfeld N., Nelson H., Alhquist D., Boardman L., Chia N. Capturing One of the Human Gut Microbiome’s Most Wanted: Reconstructing the Genome of a Novel Butyrate-Producing, Clostridial Scavenger from Metagenomic Sequence Data // Front Microbiol. 2016; May, 26 (7): 783. doi: 10.3389/fmicb.2016.00783.

19. Rivière A., Selak M., Lantin D., Leroy F., De Vuyst L. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut // Front Microbiol. 2016; Jun, 28 (7): 979. doi: 10.3389/fmicb.2016.00979.

20. Takada T., Kurakawa T., Tsuji H., Nomoto K. Fusicatenibacter saccharivorans gen. nov., sp. nov., isolated from human faeces. // Int. J. Syst. Evol. Microbiol. 2013; Oct., 63 (10): 3691–3696. doi: 10.1099/ijs.0.045823-0.

21. Sleat R., Mah R.A. Clostridiurn populeti sp. nov., a Cellulolytic Species from a Woody-Biomass Digestor. // International Journal of systematic bacteriology. Apr. 1985; 35 (2): 160–163.

22. Kverka M., Zakostelska Z., Klimesova K., Sokol D., Hudcovic T., Hrncir T., Rossmann P., Mrazek J., Kopecny J., Verdu E.F., Tlaskalova-Hogenova H. Oral administration of Parabacteroides distasonis antigens attenuates experimental murine colitis through modulation of immunity and microbiota composition // Clin. Exp. Immunol. 2011 Feb; 163 (2): 250–259. doi: 10.1111/j.1365-2249.2010.04286.x.

23. Bui T.P., Ritari J., Boeren S., de Waard P., Plugge C.M., de Vos W.M. Production of butyrate from lysine and the Amadori product fructoselysine by a human gut commensal // Nat. Commun. 2015; Dec., 1, 6: 10062.

24. Jangi S. et al. Alterations of the human gut microbiome in multiple sclerosis // Nat. Commun. 7:12015. doi: 10.1038/ncomms12015 (2016).

25. Stock I., Sherwood K.J., Wiedemann B. Antimicrobial susceptibility patterns, beta-lactamases, and biochemical identification of Yokenella regensburgei strains. // Diagn. Microbiol. Infect. Dis. 2004; Jan., 48 (1): 5–15.

26. Hong H., Kim B.S., Im H.I. Pathophysiological role of neuroinflammation in neurodegenerative diseases and psychiatric disorders. // Int. Neurourol. J. 2016; May, 20 (1): 2–7. doi: 10.5213/inj.1632604.302.

27. Gerritsen J., Fuentes S., Grievink W., van Niftrik L., Tindall B.J., Timmerman H.M., Rijkers G.T., Smidt H. Characterization of Romboutsia ilealis gen. nov., sp. nov., isolated from the gastro-intestinal tract of a rat, and proposal for the reclassification of five closely related members of the genus Clostridium into the genera Romboutsia gen. nov., Intestinibacter gen. nov., Terrisporobacter gen. nov. and Asaccharospora gen. nov. // Int. J. Syst. Evol. Microbiol. 2014; May, 64 (5): 1600–1616. doi: 10.1099/ijs.0.059543-0.

28. Russell W.R., Duncan S.H., Scobbie L., Duncan G., Cantlay L., Calder A.G., Anderson S.E., Flint H.J. Major phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein // Mol. Nutr. Food Res. 2013; Mar., 57 (3): 523–535. doi: 10.1002/mnfr.201200594.

29. Salopek-Sondi B., Piljac-Zegarac J., Magnus V., Kopjar N. Free radical-scavenging activity and DNA damaging potential of auxins IAA and 2-methyl-IAA evaluated in human neutrophils by the alkaline comet assay // J. Biochem. Mol. Toxicol. 2010; May–June, 24 (3): 165–173. doi: 10.1002/jbt.20323.

30. Dalmazzo L.F., Santana-Lemos B.A., Jácomo R.H., Garcia A.B., Rego E.M., da Fonseca L.M., Falcão R.P. Antibody-targeted horseradish peroxidase associated with indole-3-acetic acid induces apoptosis in vitro in hematological malignancies // Leuk. Res. 2011; May, 35 (5): 657–662. doi: 10.1016/j.leukres.2010.11.025.

31. Suzuki T., Yamaguchi H., Kikusato M., Matsuhashi T., Matsuo A., Sato T., Oba Y., Watanabe S., Minaki D., Saigusa D., Shimbo H., Mori N., Mishima E., Shima H., Akiyama Y., Takeuchi Y., Yuri A., Kikuchi K., Toyohara T., Suzuki C., Kohzuki M., Anzai J., Mano N., Kure S., Yanagisawa T., Tomioka Y., Toyomizu M., Ito S., Osaka H., Hayashi K., Abe T. Mitochonic acid 5 (MA-5), a derivative of the plant hormone indole-3-acetic acid, improves survival of fibroblasts from patients with mitochondrial diseases // Tohoku J. Exp. Med. 2015; 236 (3): 225–232. doi: 10.1620/tjem.236.225.

32. Lepeta K., Lourenco M.V., Schweitzer B.C., Martino Adami P.V., Banerjee P., Catuara-Solarz S., de La Fuente Revenga M., Guillem A.M., Haidar M., Ijomone O.M., Nadorp B., Qi L., Perera N.D., Refsgaard L.K., Reid K.M., Sabbar M., Sahoo A., Schaefer N., Sheean R.K., Suska A., Verma R., Vicidomini C., Wright D., Zhang X.D., Seidenbecher C. Synaptopathies: synaptic dysfunction in neurological disorders – A review from students to students. // J. Neurochem. 2016; Sep., 138 (6): 785–805. doi: 10.1111/jnc.13713.

33. Pequegnat B., Sagermann M., Valliani M., Toh M., Chow H., Allen-Vercoe E., Monteiro M.A. A vaccine and diagnostic target for Clostridiumbolteae, an autism-associated bacterium. // Vaccine. 2013; Jun, 10; 31 (26): 2787–2790. doi: 10.1016/j.vaccine.2013.04.018.

34. Kunze W.A., Mao Y.K., Wang B., Huizinga J.D., Ma X., Forsythe P., Bienenstock J. Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium-dependent potassium channel opening // J. Cell. Mol. Med. 2009; 13 (8B): 2261–2270.

35. Paillusson S., Clairembault T., Biraud M., Neunlist M., Derkinderen P. Activity-dependent secretion of alpha-synuclein by enteric neurons // J. Neurochem. 2013; 125: 512–517.

36. Chen Y., Palm F., Lesch K., Gerlach M., Moessner R., Sommer C. 5-hydroxyindolacetic acid (5-HIAA), a main metabolite of serotonin, is responsible for complete Freund’s adjuvant-induced thermal hyperalgesia in mice // Mol Pain. 2011; 7: 21.

37. Pfleiderer A., Lagier J.C., Armougom F., Robert C., Vialettes B., Raoult D. C ulturomics identified 11 new bacterial species from a single anorexia nervosa stool sample. // Eur. J. Clin. Microbiol. Infect. Dis. 2013; Nov., 32 (11): 1471–1481. doi: 10.1007/s10096-013-1900-2.

38. Goodrich J.K., Waters J.L., Poole A.C., Sutter J.L., Koren O., Blekhman R. et al. Human genetics shape the gut microbiome // Cell. 2014; Nov., 6, 159 (4): 789–799. doi: 10.1016/j.cell.2014.09.053.

39. Woting A., Blaut M. The Intestinal Microbiota in Metabolic Disease // Nutrients. 2016; Apr., 6, 8 (4): 202. doi: 10.3390/nu8040202.

40. Wang L., Li P., Tang Z., Yan X., Feng B. Structural modulation of the gut microbiota and the relationship with body weight: compared evaluation of liraglutide and saxagliptin treatment. // Sci. Rep. 2016; Sep., 16, 6: 33251. doi: 10.1038/srep33251.

41. Akbar U., He Y., Dai Y., Hack N., Malaty I., McFarland N.R. et al. Weight loss and impact on quality of life in Parkinson’s disease// PLoS One. 2015; May, 4; 10 (5): e0124541. doi: 10.1371/journal.pone.0124541


Review

For citations:


Petrov V.A., Alifirova V.M., Saltykova I.V., Zhukova I.A., Zhukova N.G., Dorofeeva Yu.B., Tyakht A.V., Altukhov I.A., Kostryukova E.S., Titova M.A., Mironova Yu.S., Izhboldina O.P., Nikitina M.A., Perevozchikova T.V., Fait E.A., Sazonov A.E. Comparison study of gut microbiota in case of Parkinson’s disease and other neurological disorders. Bulletin of Siberian Medicine. 2016;15(5):113-125. (In Russ.) https://doi.org/10.20538/1682-0363-2016-5-113-125

Views: 2383


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)