Morphofunctional status of stem cells culture on 2D matrix imitating «quiescent» osteogenic and hemopoietic microterritories
https://doi.org/10.20538/1682-0363-2012-6-96-105
Abstract
An influence relief features and quantitative parameters of model bone mineral matrix on in vitro morphofunctional status of human prenatal stromal lung cells (HPSLC) and in vivo mice bone/marrow system remodeling has been studied. Investigations have showed that magnetron calcium phosphate (CaP) coatings are thin (thickness less than 1—2 μm), nonporous, smooth (Ra < 1 μm) layer of carboxylated apatites with the calcium/phosphorus ratio higher than stoichiometric one (more than 1.67). Such 2D surfaces have discreet structure-functional microterritories (niches) for HPSLC. Nevertheless, HPSLC maturation in osteoblasts under 4-days cultivation on such surfaces is unlikely. Poor HPSLC osteogenic committing on «smooth» (Ra < 1 μm) CaP coating is in vitro associated with an average index of artificial osteogenic niche less than 34%, weak artificial surface dissolution and elevated TNFα secretion by cell culture. A behavior of such implants with singenic bone marrow column is displayed in vivo by a degeneration of mice heterotopic osteogenesis and hemopoiesis. Methodology suggested allows apparently to imitate bone surface microterritories having “quiescent“ endosteal niches for stromal and hemopoietic stem cells.
About the Authors
I. A. KhlusovRussian Federation
M. Yu. Khlusova
N. M. Shevtsova
M. V. Dvornichenko
Nechaev K.A. A. Nechaev
K. V. Zaitsev
Yu. V. Klepikova
V. F. Pichugin
R. A. Surmenev
M. A. Surmeneva
References
1. Клиническая онкогематология / под ред. М.А. Волковой. М.: Медицина, 2001. 576 с.
2. Серов В.В., Шехтер А.Б. Соединительная ткань (функ-циональная морфология и общая патология). М.: Меди-цина, 1981. 312 с.
3. Тиц Н. Клиническое руководство по лабораторным те-стам: пер. с англ. / под ред. В.В. Меньшикова. М.: Юни-мед-Пресс, 2003. 943 с.
4. Фриденштейн А.Я., Лурия Е.А. Клеточные основы кроветворного микроокружения. М.: Медицина, 1980.
5. с.
6. Хлусов И.А., Хлусова М.Ю., Зайцев К.В. и др. Пилотное исследование in vitro параметров искусственной ниши для остеогенной дифференцировки пула стромальных стволовых клеток человека // Клеточные технологии в биологии и медицине. 2010. № 4. С. 216—224.
7. Чайкина М.В., Хлусов И.А., Карлов А.В., Пайчадзе К.С. Механохимический синтез нестехиометрических и за-мещенных апатитов с наноразмерными частицами для использования в качестве биосовместимых материалов // Химия в интересах устойчивого развития. 2004. Т. 12. С. 389—399.
8. Чертков И.Л., Дризе Н.И. Как обеспечивается поддер-жание кроветворной системы // Гематология и трансфу-зиология. 1998. Т. 43, № 4. С. 3—8.
9. Aerts F., Wagemaker G. Mesenchymal stem cell engineering and transplantation // Genetic Engineering of Mesenchymal Stem Cells / J.A. Nolta (ed.). Springer, 2006.
10. P. 1—44.
11. Arai F., Suda T. Quiescent stem cells in the niche
12. (July 11, 2008) // StemBook, ed. The Stem Cell Rese-
13. arch Community, StemBook, doi/10.3824/stembook.1.6.1, http://www.stembook.org.
14. Biomaterials Science: an introduction to Materials in Medicine / ed. by B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons. 2nd ed. Elsevier Inc., 2004. 851 p.
15. Birgersdotter A., Sandberg R., Ernberg I. Gene expression perturbation in vitro — a growing case for three-dimensional (3D) culture systems // Semin. Cancer Biol. 2005. V. 15. P. 405—412.
16. Chan C.K.F., Chen C.C., Luppen C.A. et al. Endochondral ossification is required for hematopoietic stem cell niche formation // Nature. 2009. V. 457. P. 490—494.
17. Curtis A.S., Varde M. Control of cell behavior: Topological factors // J. Natl. Cancer Inst. 1964. V. 33. P. 15—26.
18. Damien C.J., Ricci J.L., Christel P. et al. Formation of a cal-cium phosphate-rich layer on absorbable calcium carbonate bone graft substitutes // Calcif Tissue Int. 1994. V. 55. P. 151—158.
19. De Barros A.P.D.N., Takiya C.M., Garzoni L.R. et al. Os-teoblasts and bone marrow mesenchemal stromal cells control hematopoietic stem cell migration and proliferation in 3D in vitro model // PLoS One. 2010. V. 5. e9093—9111.
20.
21. Dellatore S.M., Garsia A.S., Miller W.M. Mimicking stem cell niches to increase stem cell expansion // Curr. Opin. Biotechnol. 2008. V. 19. P. 534—540.
22. Duncan A.W., Rattis F.M., DiMascio L.N. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells // Nat. Immunol. 2005. V. 6. P. 314—322.
23. Eshghi S., Schaffer D.V. Engineering microenvironments
24. to control stem cell fate and function / ed. S. Bhatia and J. Polak. The Stem Cell Research Community, 2008. doi/10.3824/stembook.1.5.1, http://www.stembook.org.
25. Friedenstein A.J. Osteogenic stem cells in bone marrow // Bone and Mineral Research / eds. J.N.M. Heershe, J.A. Kanis. Amsterdam, The Netherlands: Elsevier Science Publishers, 1990. P. 243—272.
26. Frisch B.J., Porter R.L., Calvi L.M. Hematopoietic niche and bone meet // Curr. Opin. Support. Palliat. Care. 2008. V. 2. P. 211—217.
27.
28. Gibson I.R., Best S.M., Bonfield W. Chemical Characteriza-tion of Silicon-Substituted Hydroxyapatite // J. Bio. Mater. Res. Symp. 1999. V. 44. P. 422—428.
29. He Q., Wan C., Li G. Concise review: multipotent mesen-chymal stromal cells in blood // Stem cells. 2007. V. 25. P. 69—77.
30. Jing D., Fonseca A.-V., Alakel N. et al. Hematopoietic stem cells in co-culture with mesenchemal stromal cells — modeling the niche compartments in vitro // Haematologica. 2010. V. 95. P. 542—550.
31. Kay H.E.M. How many cell generations? // Lancet. 1965. V. 2. P. 418—419.
32. Khlusov I. A., Karlov A. V., Sharkeev Yu. P. et al. Osteo-genic Potential of Mesenchymal Stem Cells from Bone Mar-row in Situ: Role of Physicochemical Properties of Artificial Surfaces // Bulletin of Experimental Biology and Medicine. 2005. V. 140, № 1. P. 144—152.
33. Kolf C.M., Cho E., Tuan R.S. Mesenchemal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation // Arthritis Res. Ther. 2007. V. 9. P. 204—219.
34. Kollet O., Dar A., Shivtiel S. et al. Osteoclasts degrade en-dosteal components and promote mobilization of hematopoietic progenitor cells // Nat. Med. 2006. V. 12. P. 657—664.
35. Li W., Yu B., Li M. et al. NEMO-binding domain peptide promotes osteoblast differentiation impaired by tumor necrosis factor alpha // Biochem Biophys Res. Commun. 2010. V. 391. P. 1228—33.
36. Lutolf M.P., Gilbert P.M., Blau H.M. Designing materials to direct stem-cell fate // Nature. 2009. V. 462. P. 433—441.
37. Osteoporosis. Etiology, diagnosis, and management: second edition / B.L. Riggs, L.J. Melton III, eds. Philadelphia; N.Y.: Lippincott-Raven Publishers, 1995. 524 p.
38. Pichugin V. F., Eshenko E.V., Surmenev R.A. et al. Appli-cation of High-Frequency Magnetron Sputtering to Deposit Thin Calcium-Phosphate Biocompatible Coatings on a Titanium Surface // J. of Surface Investigation. X-ray, Synchrotron and Neutron Techniques. 2007. V. 1, № 6. P. 679—682.
39. Purton L.E., Scadden D.T. The hematopoietic stem cell niche // StemBook / ed. L. Silberstein. The Stem Cell Research Community, 2008. doi/10.3824/stembook.1.28.1, http://www.stembook.org.
40. Scadden D.T. The stem cell niche in health and leukemic disease // Best Pract. Res. Clin. Haematol. 2007. V. 20. P. 19—27.
41. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell // Blood Cells. 1978. V. 4. P. 7—25.
42. Sniadecki N.J., Desai R.A., Ruiz S.A., Chen C.S. Nanotech-nology for cell-substrate interactions // Annals of Biomedial Engineering. 2006. V. 34. P. 59—74.
43. Taichman R.S. Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche // Blood. 2005. V.105. P. 2631—2639.
44. Taichman R.S., Reilly M.J., Verma R.S. et al. Hepatocyte growth factor is secreted by osteoblasts and cooperatively permits the survival of haematopoietic progenitors // Br. J. Haematol. 2001. V. 112. P. 428—448.
45. Trentin J.J. Determination of bone marrow stem cell differ-entiation by stromal hemopoietic inductive microenvironments (HIM) // Am. J. Pathol. 1971. V. 65. P. 621—628.
46. Wilson A., Trumpp A. Bone-marrow haematopoietic-stem-cell niches // Nat. Rev. Immunol. 2006. V. 6. P. 93—106.
47. Yin T., Li L. The stem cell niches in bone // J. of Clinical In-vestigation. 2006. V. 116. P. 1195—1201.
Review
For citations:
Khlusov I.A., Khlusova M.Yu., Shevtsova N.M., Dvornichenko M.V., Nechaev N.A., Zaitsev K.V., Klepikova Yu.V., Pichugin V.F., Surmenev R.A., Surmeneva M.A. Morphofunctional status of stem cells culture on 2D matrix imitating «quiescent» osteogenic and hemopoietic microterritories. Bulletin of Siberian Medicine. 2012;11(6):96-105. (In Russ.) https://doi.org/10.20538/1682-0363-2012-6-96-105