Preview

Bulletin of Siberian Medicine

Advanced search

OPPORTUNITIES OF BIOMEDICAL USE OF CARBON NANOTUBES

https://doi.org/10.20538/1682-0363-2014-1-135-144

Abstract

Nanomaterials  –  materials,  whouse  structure  elements  has  proportions  doesn’t  exceed  100  nm.  In superdispersed state matter acquire new properties. In the last decade, carbon nanotubes become the most popular nanomaterials, that cause attention of representatives of various scientific field. The сarbon nanotubes offer new opportunities for biological and medical applications: imaging at the molecular, cellular and tissue levels, biosensors and electrodes based on carbon nanotubes, target delivery of various substances, radiation and photothermal therapy. The most promising of carbon nanotubes in the context of biomedical applications is their ability to penetrate the various tissues of the body and carry large doses of agents, providing diagnostic and therapeutic effects. Functionalized nanotubes are biodegradable. Other current direction of using carbon nanotubes in medicine and biology is to visualize objects on the molecular, cellular and tissue level. Associated with carbon nanotubes contrasting substances improve the visualization of cells and tissues, which can detected new patterns of development of the pathological process. Due to the vagueness of the question of biocompatibility and cytotoxicity of carbon nanotubes possibility of their practical application is hampered. Before the introduction of carbon nanotubes into practical health care is necessary to provide all the possible consequences of using nanotubes. High rates of properties and development of new nanostructures based on carbon nanotubes in the near future will lead to new advances related to the application and development of new parameters that will determine their properties and effects. In these review attention is paid to the structure, physico-chemical properties of nanotubes, their functionalization, pharmacokinetics and pharmacodynamics and all aspects of using of carbon nanotubes.

About the Authors

I. V. Mitrofanova
Siberian State Medical University, Tomsk
Russian Federation


I. V. Milto
Siberian State Medical University, Tomsk; National Research Tomsk Polytechnic University
Russian Federation


I. V. Suhodolo
Siberian State Medical University, Tomsk
Russian Federation


G. Yu. Vasyukov
Siberian State Medical University, Tomsk; Institute of Complex Problems of Cardio-Vascular Diseases, Siberian Branch of Russian Academy of Medical Science, Kemerovo
Russian Federation


References

1. Mahmood M. Cytotoxicity and biological effects of functional nanomaterials delivered to various cell lines. J. Appl. Toxicol., 2010, no. 30, pp. 74–83.

2. Cheng J., Meziani M.J., Sun Y.-P., Cheng S.H. Poly(ethylene glycol)-conjugated multi-walled carbon nano-tubes as an efficient drug carrier for overcoming multidrug resistance. Toxicology and Applied Pharmacology, 2011, no. 250, pp. 184–193.

3. Bi S., Zhou H., Zhang S. Multilayers enzyme-coated carbon nanotubes as biolabel for ultrasensitive chemiluminescence immunoassay of cancer biomarker. Biosensors and Bioelectronics, 2009, no. 24, pp. 2961–2966.

4. Yang F., Hu J., Yang D., Long J., Luo G., Jin C., Yu X., Xu J., Wang C., Ni Q., Fu D. Pilot study of targeting magnetic carbon nanotubes to lymph nodes. Nanomed., 2009, no. 4, pp. 317–330.

5. Yinghuai Z., Peng A.T., Carpenter K., Maguire J.A., Hosmane N.S., Takagaki M. Substituted carborane-appended water-soluble single-wall carbon nanotubes: new approach to boron neutron capture therapy drug delivery. J. Am. Chem. Soc., 2005, no. 127, pp. 9875–9880.

6. Vivek S.T., Manasmita D., Amit K.J., Swapnil P., Sanyong J. Carbon nanotubes in cancer theragnosis. Nanomedecine, 2010, no. 5, pp. 1277–1301.

7. Pacurari M., Yin X, Zhao J., Ding M., Leonard S., Schwegler-Berry D., Ducatman B., Sbarra D., Hoover M., Castranova V., Vallyathan V. Raw single-wall carbon nanotubes induce oxidative stress and active MAPKs, AP-1, NFKappaB, and AKT in normal and malignant human mesothelial cells. Environmental Health Perspectives, 2008, vol. 116, no. 9, pp. 1211–1217.

8. Lam C.W, James J.T, McCluskey R., Hunter R.L. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days intratracheal instillation. Toxicol. Sci., 2004, no. 77, pp. 126–134.

9. Mercer R.R., Scabilloni J., Wang L., Kisin E., Murray A.R., Schwegler-Berry D. Alteration of deposition pattern and pulmonary response as a result of improved dispersion of aspirated single-walled carbon nanotubes in a mouse model. Am. J. Physiol. Lung. Cell. Mol. Physiol., 2008, no. 294, pp. 87–97.

10. Folkmann J., Risom L., Jacobsen N., Wallin H., Loft S., Meller P. Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes. Environmental Health Perspectives, 2009, vol. 117, no. 5, pp. 1557–1566

11. Ma Y., Zheng Y., Huang X., Xi T., Lin X., Han D., Song W. Mineralization behavior and interface properties of BGPVA/bone composite implants in simulated body fluid. Biomed Mater., 2010, vol. 2, no. 5, pp. 25003

12. Tsuda H., Xu J., Sakai Y., Futakuchi M., Fukamachi K. Toxicology of engineered nanomaterials – a review of carcinogenic potential. Asian Pacific Journal of Cancer Prevention, 2009, vol. 10, pp. 975–980.

13. Reilly R.M. Carbon nanotubes: potential benefits and risks of nanotechnology in nuclear medicine. The J. of nuclear medicine, 2007, vol. 48, no. 7, pp. 1039–1042.

14. Sato Y., Yokoyama A., Shibata K. and al. Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol. BioSyst., 2005, no. 1, pp. 176–182.

15. Yamashita K. Carbon nanotubes elicit DNA damage and inflammatory response relative to their size and shape. Inflammation, 2010, vol. 33, no. 4, pp. 276–280.

16. Shvedova A.A., Fabisiak J.P., Kisin E R., Murray A.R., Roberts J.R., Tyurina Y.Y. Sequential exposure to carbon nanotubes and bacteria enhances pulmonary inflammation and infectivity. Am. J. Respir. Cell. Mol. Biol., 2008, vol. 5, no. 38, pp. 579−590.

17. Carter A. Learning from history: understanding the carcinogenic risks of nanotechnology. News JNCI, 2008, vol. 100, no. 23, pp. 1664–1665.

18. Pan B., Cui D., Xu P., Ozkan C., Feng G., Ozkan M., Huang T., Chu B., Li Q., He R., Hu G. Synthesis and characterization of polyamidoaminedendrimer-coated multi-walled carbon nanotubes and their application in gene delivery systems. Nanotechnology, 2009, no. 20, pp. 10–33.

19. Benito J.M., Garcia M.G., Mellet C.O., Baussanne I., Defaye J., Fernandez M.G. Optimizing saccharide-directed molecular delivery to biological receptors: design, synthesis, and biological evaluation of glycodendrimer-cyclodextrin conjugates. J. Am. Chem. Soc., 2004, no. 126, pp. 1035–1040.

20. Cui D., Tian F., Ozkan CS., Wang M., Gao H. Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol. Lett., 2005, vol. 1, no.. 155, pp. 73–85.

21. Bartholomeusz J., Cherukuri P., Kingston J., Cognet L., Lemos R., Leeuw T.K., Russo G., Weisman R., Powis G. In vivo therapeuticsilencing of Hypoxia-Inducible Factor 1 alpha (HIF-1α) using single walled carbon nanotubes noncovalently coated with siRNA. Nano Res., 2009, vol. 4, no. 2, pp. 279–291.

22. Zheng M., Jagota A., Semke E.D., Diner B.A., Mclean R.S., Lustig S.R., Richardson R.E., Tassi N.G. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater., 2003, no. 2. P. 338–342.

23. Coccinia T., Rodab E., Sarigiannisc D.A., Mustarellid P., Quartaroned E., Profumoe A., Manzoa L. Effects of watersoluble functionalized multi-walled carbon nanotubes examinated by different cytotoxicity methods in human astrocyte D384 and lung A549 cells. Toxicology, 2010, no. 269, pp. 41–53.

24. Shvedova A.A., Kisin E.R., Porter P., Schulte P., Kagan V.E., Fadeel B., Castranova V. Mechanism of pulmonary toxicity and medical applications of carbon nanotubes: two faces of Janus? Pharmacology & Therapeutics, 2009, no. 121, pp. 192–204.

25. Bhirde A.A., Patel V.,Gavard J., Zhang G., Sousa A.A, Masedunskas A., Leapman R.D., Weigert R., Gutkind J. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano, 2009, vol. 2, no. 3, pp. 307–316.

26. Singh R., Pantarotto D., McCarthy D. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. J. Am. Chem. Soc., 2005, no. 127, pp. 4388.

27. Ji S., Liu C., Zhang B., Yang F. Carbon nanotubes in cancer diagnosis and therapy. Biochimica et Biophysica Acta, 2010, no. 1806, pp.1121–112.

28. McDevitt M.R., Chattopadhyay D., Jaggi J.S., Finn R.D., Zanzonico P.B., Villa C., Rey D., Mendenhall J., Batt C.A., Njardarson J.T., Scheinberg D.A. PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice. PLoS ONE, 2007, no. 2, pp. 145–167.

29. Kaul G., Amiji M. Biodistribution and targeting potential of poly(ethylene glycol)-modified gelatin nanoparticles in subcutaneous murine tumor model. J. Drug Target., 2004, vol. 9–10, no. 12, pp. 585–591.

30. Otsuka H., Nagasaki Y., Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv. Drug. Deliv. Rev., 2003, no. 55, pp. 403–419.

31. Duong H.M., Papavassiliou D.V., Mullen K.J. et al. Computational modeling of the thermal conductivity of singlewalled carbon nanotube-polymer composites. Int. J. Heat Mass Transfer, 2009, vol. 23–24, no. 52, pp. 5591–5597.

32. Bianco A., Kostarelos K., Partidos C.D., Prato M. Biomedical applications of functionalized carbon nanotubes. Chem. Commun. (Cambridge, UK), 2005, no. 5, pp. 571–577.

33. Chen J., Chen S., Zhao X.,Kuznetsova L.V., Wong S.S., Ojima I. Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J. Am. Chem. Soc., 2008, vol. 49, no. 130, pp. 16778–16785.

34. Sayes C., Liang F., Hudson J., Mendez J., Guo W., Beach J., Moore V., Doyle C., West J., Billups W., Ausman K., Colvin V. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol. Lett., 2006, no. 161, pp. 135–42.

35. McDevitt M.R. Tumor targeting with antibodyfunctionalized, radiolabeled carbon nanotubes. The J. of nuclear medicine, 2007, vol. 48, no. 7, pp. 1180–1189.

36. Bianco A., Kostarelos K., Prato M. Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol., 2005, no. 9, pp. 674–679.

37. De La Zerda A., Zavaleta C., Keren S. Carbon nanotubes as photoacoustic molecular imaging agent in living mice. Nat. Nanotechnol., 2008, vol. 9, no. 3, pp. 557–562.

38. Yu X., Zhang Y., Chen C., Yao Q., Li M. Targeted drug delivery in pancreatic cancer. Biochimica et Biophysica Acta, 2010, no. 1805, pp. 97–104.

39. Kateb B., Yamamoto V., Alizadeh D., Zhang L., Manohara H.M., Bronikowski M.J., Badie B. Multi-walled carbon nanotube (MWCNT) synthesis, preperetion, labeling, and functionalization. Immunotherapy of Cancer, Methods in Molecular Biology, 2010, no. 651, pp. 307–317.

40. Ting G., Chang C.-H., Wang H. Cancer nanotergeted radiopharmaceutical for tumor imaging and therapy. Anticancer Researche, 2009, no. 29, pp. 4107–4118.

41. Pastorin G., Wu W., Wieckwski S., Briand J.P., Kostarelos K., Prato M., BiancoA. Double functionalization of carbon nanotubes for multimodal drug delivery. Chem. Commun., 2006, no. 11. , pp. 1182–1184.

42. Mahmood M., Karmakar A., Fejleh A., Mocan T., Iancu C., Mocan L., Iancu D.T., Xu Y., Dervishi E., Li Z., Biris A.R., Agarwal R., Ali N., Galanzha E.I., Biris A.S., Zharov V.P. Synergistic enhancement of cancer therapy using a combination of carbon nanotubes and anti-tumor drug. Nanomedicine. (London), 2009, no. 4, pp. 883–893.

43. Dumortier H., Lacotte S., Pastorin G., Marega R., Wu W., Bonifazi D., Briand J.P., Prato M., Muller S., Bianco A. Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett., 2006, no. 6, pp. 1522–1528.

44. Liu Z., Davis C., Cai W., He L., Chen X., Dai H. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probes by Raman spectroscopy. Proc. Natl. Acad. Sci. USA, 2008, no. 105, pp. 1410–1415.

45. Weng X., Wang M., Ge J., Yu S., Liu B., Zhong J., Kong J. Carbon nanotubes as a protein toxin transporter for selective HER2-positive breast cancer cell destruction. Mol. BioSyst., 2009, no. 5, pp. 1224–1231.

46. Liu Z., Fan A.C., Rakhra K., Sherlock S., Goodwin A., Chen X., Yang Q., Felsher D.W., Dai H. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew. Chem. Int. Ed Engl., 2009, vol. 41, no. 48, pp. 7668–7672.

47. Subbiah R.P., Veerapandian M., Sadhasivam S., Yun K. Structural and biological evaluation of a multifunctional SWCNT-AgNPs-DNA/PVA bio-nanofilm. Electronic supplementary material, 2011, no. 4, pp. 547–560.


Review

For citations:


Mitrofanova I.V., Milto I.V., Suhodolo I.V., Vasyukov G.Yu. OPPORTUNITIES OF BIOMEDICAL USE OF CARBON NANOTUBES. Bulletin of Siberian Medicine. 2014;13(1):135-144. (In Russ.) https://doi.org/10.20538/1682-0363-2014-1-135-144

Views: 3163


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)