Amyloid-beta 40 as a biomarker of cognitive impairment in acute ischemic stroke
https://doi.org/10.20538/1682-0363-2017-3-79-86
Abstract
Aim: to study the role of amyloid-beta 40 (Aβ 40) in the development of cognitive impairment in acute ischemic stroke.
Materials and methods. The study included 70 patients aged 33–86 years, 46 men and 24 women. In patients with acute ischemic stroke cognitive status was assessed with Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment Test (MoCA), Frontal Assessment Battery (FAB), Schulte tables, Clock Drawing Test, Test for Semantic Verbal Fluency and Five Words Test. The concentration of Aβ 40 in the cerebrospinal fluid was determined. Morphometric (size of the infarct and leukoaraiosis area, volume of the brain ventricles and hippocampus) and diffusion-tensor parameters of MRI (fractional anisotropy of putamen, thalamus, hippocampus, corpus callosum, limbs of the internal capsule, the cingulate, the superior longitudinal and inferior fronto-occipital tracts) were studied.
Results. The concentration of Aβ 40 in the cerebrospinal fluid was 436,4 (226,0–514,0) pg/ml. The protein level was associated with the result of subtests «Orientation» (MMSE) and «Attention» (MoCA), as well as indirect recall with cues in MoCA. Patients with MMSE score of 24–27 points were characterized by a lower concentration of Aβ 40 as compared to patients with a score less than 24 points. Aβ 40 concentration more than 436,4 pg/mL was associated with a more severe somatic co-morbidity of stroke (hypertension, lower hemoglobin and albumin level, higher erythrocyte sedimentation rate), a smaller volume of the brain ventricles, lower fractional anisotropy of the thalamus, cingulate tracts and contralateral hippocampus. Aβ 40 concentration more than 436,4 pg/mL was also associated with a lower global cognitive status (according to the MMSE and MoCA), as well as the reduction in certain cognitive functions, namely, attention, visual-spatial functions and memory.
Conclusions. The concentration of Aβ 40 in the cerebrospinal fluid is a biological marker of severity type of post-stroke cognitive impairment. This interaction is probably due to the damage to the hippocampus, thalamus and cingulate tracts. In our opinion, the biomarker reflects both ischemic and neurodegenerative components of the pathogenesis of cognitive impairment in acute ischemic stroke.
About the Authors
Aleksey A. KuleshRussian Federation
PhD, Associate Professor, Department of Neurology, Perm State Medical University named after Academician E.A. Wagner, Perm, Russian Federation.
Viktor E. Drobakha
Russian Federation
Assistant, Radiology Department, Perm State Medical University named after Academician E.A. Wagner, Perm, Russian Federation.
Elena M. Kuklina
Russian Federation
DBSc, Principal Researcher Fellow, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm, Russian Federation.
Vladimir V. Shestakov
Russian Federation
DM, Professor, Head of the Department of Neurology, Perm State Medical University named after Academician E.A. Wagner, Perm, Russian Federation.
References
1. Levin O.S. Sovremennyepodkhody k diagnostikeilecheniy usmeshannoydementsii [Current approaches to diagnosis and treatment of mixed dementia] // Trudnyypatsient – Difficult patient. 2014; 12 (5): 40–46 (in Russian).
2. Bastos-Leite A.J., van der Flier W.M., van Straaten E.C., Staekenborg S.S., Scheltens P., Barkhof F. The contribution of medialtemporal lobe atrophy and vascular pathology to cognitive impairment in vascular dementia // Stroke. 2007; 38: 3182–3185. DOI: 10.1161/STROKEAHA.107.490102.
3. Schneider J.A., Arvanitakis Z., Bang W., Bennett D.A. Mixed brain pathologies account for most dementia cases in community – dwelling older persons // Neurology. 2007; 69: 2197–2204. DOI: 10.1212/01.wnl.0000271090.28148.24.
4. Lewis J., Dickson D.W., Lin W.L., Chisholm L., Corral A., Jones G., Yen S.H., Sahara N., Skipper L., Yager D., Eckman C., Hardy J., Hutton M., McGowan E. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP // Science. 2001; 293 (5534): 1487–1491. DOI: 10.1126/science.1058189.
5. McGowan E., Pickford F., Kim J., Onstead L., Eriksen J., Yu C., Skipper L., Murphy M.P., Beard J., Das P., Jansen K., Delucia M., Lin W.L., Dolios G., Wang R., Eckman C.B., Dickson D.W., Hutton M., Hardy J., Golde T. Abeta42 is essential for parenchymal and vascular amyloid deposition in mice // Neuron. 2005; 47(2): 191–199. DOI: 10.1016/j.neuron.2005.06.030.
6. Ikeda M., Yonemura K., Kakuda S., Tashiro Y., Fujita Y., Takai E., Hashimoto Y., Makioka K., Furuta N., Ishiguro K., Maruki R., Yoshida J., Miyaguchi O., Tsukie T., Kuwano R., Yamazaki T., Yamaguchi H., Amari M., Takatama M., Harigaya Y., Okamoto K. Cerebrospinal fluid levels of phosphorylated tau and Aβ1-38/Aβ1-40/Aβ1-42 in Alzheimer’s disease with PS1 mutations // Amyloid. 2013; 20 (2): 107–112. DOI: 10.3109/13506129.2013.790810.
7. Slaets S., Le Bastard N., Martin J.J., Sleegers K., Van Broeckhoven C., De Deyn P.P., Engelborghs S. Cerebrospinal fluid Aβ1-40 improves differential dementia diagnosis in patients with intermediate P-tau181P levels // J. Alzheimers Dis. 2013; 36 (4): 759–767. DOI: 10.3233/JAD-130107.
8. Park L., Zhou P., Koizumi K., El Jamal S., Previti M.L., Van Nostrand W.E., Carlson G., Iadecola C. Brain and circulating levels of Aβ1-40 differentially contribute to vasomotor dysfunction in the mouse brain // Stroke. 2013; 44 (1): 198–204. DOI: 10.1161/STROKEAHA.112.670976.
9. Lee P.H., Bang O.Y., Hwang E.M., Lee J.S., Joo U.S., Mook-Jung I., Huh K. Circulating beta amyloid protein is elevated in patients with acute ischemic stroke // J. Neural Transm (Vienna). 2005; 112 (10): 1371–1379. DOI: 10.1007/s00702-004-0274-0.
10. Garcia-Alloza M., Gregory J., Kuchibhotla K.V., Fine S., Wei Y., Ayata C., Frosch M.P., Greenberg S.M., Bacskai B.J. Cerebrovascular lesions induce transient β-amyloid deposition // Brain. 2011; 134 (12): 3697–3707. DOI: 10.1093/brain/awr300.
11. Kulesh A.A., Shestakov V.V. Postinsul’tnye kognitivnye narusheniya i vozmozhnosti terapiipreparatom tselleks [Post-stroke cognitive impairment and the possibility of treatment with cellex] // Zh Nevrol Psikhiatr Im S.S. Korsakova – Journal of Neurology and Psychiatry named after S.S. Korsakoff’s. 2016; 116 (5): 38–42. DOI: 10.171116/jnevro20161165138-42 (in Russian).
12. Lee P.H., Bang O.Y., Hwang E.M., Lee J.S., Joo U.S., Mook-Jung I., Huh K. Circulating beta amyloid protein is elevated in patients with acute ischemic stroke // Neural Transm (Vienna). 2005; 112 (10): 1371–1379. DOI: 10.1007/s00702-004-0274-0.
13. Das S., Paul N., Hazra A., Ghosal M., Ray B.K., Banerjee T.K., Burman P., Das S.K. Cognitive dysfunction in stroke survivors: a community – based prospective study from Kolkata, India // J. Stroke Cerebrovasc Dis. 2013; 22 (8): 1233–1242. DOI: 10.1016/j.jstrokecerebrovasdis.2012.03.008.
14. Moulin S., Leys D., Schraen-Maschke S., Bombois S., Mendyk A.M., Muhr-Tailleux A., Cordonnier C. Aβ1-40 and Aβ1-42 plasmatic levels in stroke: influence of pre – existing cognitive status and stroke characteristics // Curr Alzheimer Res. 2015 Oct 27. [Epub ahead of print].
15. Liu W., Wong A., Au L., Yang J., Wang Z., Leung E.Y., Chen S., Ho C.L., Mok V.C. Influence of Amyloid-β on Cognitive Decline After Stroke/Transient Ischemic Attack: Three-Year Longitudinal Study // Stroke. 2015; 46 (11): 3074–3080.
16. Drobakha V.E., Kulesh A.A., Shestakov V.V. Fraktsionnaya anizotropiya belogo iserogoveshchestva golovnogo mozga v ostrom periode ishemicheskogo insul’ta kak marker nevrologicheskogo, kognitivnogo i funktsional’nogo statusa [Fractional anisotropy white and gray matter of brain in acute ischemic strokeas a marker of neurological, cognitive and functional status] // Meditsinskaya vizualizatsiya – Medical Visualization. 2015; 6: 8–15 (in Russian).
17. Kulesh A.A., Shestakov V.V., Drobakha V.E., Kuklina E.M., Nekrasova I.B. Neyrovospalitel’nye, neyrodegenerativnye i strukturnye tserebral’nye markery osnovnykh klinicheskikh variantov postinsul’tnykh kognitivnykh narusheniy v ostrom periode ishemicheskogo insul’ta [Neuroinflammatory, neurodegenerative and structural brain biomarkers of the main types of post-stroke cognitive impairment in acute period of ischemic stroke] // Vestnik Rossiyskoy Akademii Meditsinskikh Nauk – Annals of Russian Academy of Medical Sciences. 2016; 71 (4): 304–312. DOI: 10.15690/vramn728 (in Russian).
18. Amtul Z., Nikolova S., Gao L., Keeley R.J., Bechberger J.F., Fisher A.L., Bartha R., Munoz D.G., McDonald R.J., Naus C.C., Wojtowicz J.M., Hachinski V., Cechetto D.F. Comorbid Aβ toxicityandstroke: hippocampalatrophy, pathology, andcognitivedeficit // NeurobiolAging; 2014; 35 (7): 1605–1614. DOI: 10.1016/j.neurobiolaging.2014.01.005.
19. Selnes P., Grambaite R., Rincon M., Bjørnerud A., Gjerstad L., Hessen E., Auning E., Johansen K., Almdahl I.S., Due-Tønnessen P., Vegge K., Bjelke B., Fladby T. Hippocampal complex atrophy in poststroke and mild cognitive impairment // J. Cereb Blood Flow Metab. 2015; 35 (11): 1729–1737. DOI: 10.1038/jcbfm.2015.110
20. Delano-Wood L., Stricker N.H., Sorg S.F., Nation D.A., Jak A.J., Woods S.P., Libon D.J., Delis D.C., Frank L.R., Bondi M.W. Posterior cingulum white matter disruption and its associations with verbal memory and stroke risk in mild cognitive impairment // J. Alzheimers Dis. 2012; 29 (3): 589–603. DOI: 10.3233/JAD-2012-102103
21. Thiel A., Cechetto D.F., Heiss W.D., Hachinski V., Whitehead S.N. Amyloid burden, neuroinflammation, and links to cognitive decline after ischemic stroke // Stroke. 2014; 45(9): 2825–2829. DOI: 10.1161/STROKEAHA.114.004285.
Review
For citations:
Kulesh A.A., Drobakha V.E., Kuklina E.M., Shestakov V.V. Amyloid-beta 40 as a biomarker of cognitive impairment in acute ischemic stroke. Bulletin of Siberian Medicine. 2017;16(3):79-86. (In Russ.) https://doi.org/10.20538/1682-0363-2017-3-79-86