Preview

Bulletin of Siberian Medicine

Advanced search

The role of proteins Stim and Orai as molecular components of the store-dependent current Ca2+ in lymphocytes

https://doi.org/10.20538/1682-0363-2018-1-191-198

Abstract

In the process of evolution of eukaryotes has formatted a highly organized mechanism for maintaining and regulating intracellular calcium homeostasis, which is one of the most important components of cell signaling in all branches of the phylogenetic tree. Intracellular calcium controls numerous physiological processes in the cell. Ca2+ forms signals as their spatial-temporal distribution. The frequency and amplitude of calcium oscillations depends on the signal strength. Calcium signals causing long-term or short-term responses of cells. Mainly, calcium signals in lymphocytes mediate gene expression program initiation that leads to proliferation, differentiation and production of proinflammatory cytokines also activate formation of inflammasome. Therefore, calcium signals mediate immune, and inflammatory response, autoimmune reaction of lymphocytes. The main mechanism of calcium signaling in lymphocytes is store-dependent Ca2+ current. Mobilization of cellular Ca2+ in response to receptor stimulation commonly occurs through release of Ca2+ ions from intracellular Ca2+ stores or influx across the plasma membrane through calcium - selective channels. Calciumselective channels are assembled from two protein families: the Orai proteins which form the ion channel pore, and the stromal interaction molecule (STIM) proteins which function as endoplasmic reticulum calcium sensors and activators of the channel. Stim protein is a transmembrane monomer which is localized at the membrane of the endoplasmic reticulum. This molecule is a sensor Ca2+ in response to emptying store activates calciumselective channels the plasma membrane. These channels express proteins Orai which are tetramers forming inside the channel pore and act as a site Ca2+. Orai binds to Stim. Orai proteins are activated after receiving information from Stim about Store depletion. Thus, the relationship and coordination of Stim and Orai proteins provides store - dependent Ca2+ current and causes cellular functional responses. Increased Ca2+ levels induce the activation of transcription factors such as NFAT, JNK1, MEF2, CREB, and, in most cases, is a crucial factor in the all differentiation or death. In this review, the mechanism of the store-dependent Ca2+ current in lymphocytes is presented.

About the Authors

E. V. Lychkovskaya
Krasnoyarsk State Medical University (KSMU) named after Professor V.F. Voyno-Yasenetsky.
Russian Federation

Lychkovskaya Elena V., Senior Lecturer, Department of Biological Chemistry with the Course of Medical, Pharmaceutical & Toxicological Chemistry.

1, Partizn Zheleznyak Str., Krasnoyarsk, 660022.



A. N. Shuvaev
Krasnoyarsk State Medical University (KSMU) named after Professor V.F. Voyno-Yasenetsky.
Russian Federation

Shuvaev Anton N., PhD, Researcher, Institute of Molecular Medicine and Pathobiochemistry.

1, Partizn Zheleznyak Str., Krasnoyarsk, 660022.



G. E. Gercog
Krasnoyarsk State Medical University (KSMU) named after Professor V.F. Voyno-Yasenetsky.
Russian Federation

Gerсog Galina E.,  PhD, Assistant Professor, Department of Biological Chemistry with the Course of Medical, Pharmaceutical & Toxicological Chemistry.

1, Partizn Zheleznyak Str., Krasnoyarsk, 660022.



L. V. Trufanova
Krasnoyarsk State Medical University (KSMU) named after Professor V.F. Voyno-Yasenetsky.
Russian Federation

Trufanova Ludmila V., PhD, Assistant Professor, Department of Biological Chemistry with the Course of Medical, Pharmaceutical & Toxicological Chemistry.

1, Partizn Zheleznyak Str., Krasnoyarsk, 660022.



L. B. Shadrina
Krasnoyarsk State Medical University (KSMU) named after Professor V.F. Voyno-Yasenetsky.
Russian Federation

Shadrina Ludmila B., Аssistant.

1, Partizn Zheleznyak Str., Krasnoyarsk, 660022.



A. A. Semenchukov
Krasnoyarsk State Medical University (KSMU) named after Professor V.F. Voyno-Yasenetsky.
Russian Federation

Semenchukov Aleksey A., Senior Lecturer, Department of Biological Chemistry with the Course of Medical, Pharmaceutical & Toxicological Chemistry.

1, Partizn Zheleznyak Str., Krasnoyarsk, 660022.



A. B. Salmina
Krasnoyarsk State Medical University (KSMU) named after Professor V.F. Voyno-Yasenetsky.
Russian Federation

Salmina Alla B., DM, Professor, Head of the Department of Biological Chemistry with the Course of Medical Pharmaceutical and Toxicological Chemistry.

1, Partizn Zheleznyak Str., Krasnoyarsk, 660022.



References

1. Fracchia K., Pai C., Walsh G. Modulation of T cell me- tabolism and function through calcium signaling. Frontiers in Immunology. 2013; 4: 1–10.

2. Kuvacheva N.V., Morgun A.V., Khilazhe- va E.D., Malinovskaya N.A., Gorina Ya.V., Pozhilenko- va E.A., Frolova O.V., Trufanova L.V., Martynova G.P., Salmina A.B. Formation of inflammas: new mechanisms of regulation of intercellular interactions of secretory activity of cells. Sibirskoye meditsinskoye obozreniye – Siberian Medical Review. 2013; 5: 3–10 (in Russ.).

3. Bhardway R., Hediger M., Demaurex N. Redox modulation of Stim-Orai signaling. Cell Calcium. 2016; 60: 142–152.

4. Hogan Р.G., Lewis R.S., Rao A. Molecular Basis of Calcium Signaling in Lymphocytes: STIM and ORAI. Annu. Rew. Immunol. 2010; 28: 491–533.

5. Nohara L.L., Stanwood S.R., Omilusik K.D. Jefferies W. A. Tweeters, Woofers And Horns: The Complex Orchestration Of Calcium Currents In T Lymphocytes. Front. Immunol. 2015; 6 (234): 1–9.

6. Rüdiger S. Stochastic models of intracellular calcium signals. Physics Reports. 2014; 534: 39–87.

7. Robert V., Triffaux E., Savignac M., Pelletier L. Calcium signaling in T-lymphocytes. Biochimie. 2011; 93: 2087– 2094.

8. Hot M. CRAC channels, calcium and cancer. Biochimica et Biophysica Acta. 2016; 1863 (13): 1408–1417.

9. Prakriya М. Store-Operated Orai Channels: Structure and Function. Published by Elsevier. 2013; 71: 1–32.

10. Rothberg B.S., Wang Y., Gill D.L. Orai Channel Pore Properties And Gating By STIM: Implications From The Orai Crystal Structure. Sci. Signal. 2013; 6 (267): 1–9.

11. Derler I., Schindl R., Fritsch R., Heftberger P., Riedl M., Beggb M., Houseb D., Romanin C. The action of selective CRAC channel blockers is affected by the Orai pore geometry. Cell Calcium. 2013; 53 (I.2): 139–151.

12. Feske S. Immunodeficiency due to defects in store-operated calcium entry. Annals of the New York Academy of Sciences. 2011; 1238: 74–90.

13. Mukherjee S., Brooks W.H. Stromal interaction molecules as important therapeutic targets in diseases with dysregulated calcium flux. Biochimica and Biophysica Acta. 2014; 8: 1–8.

14. Tian C., Du L., Zhou Y., Li M. Store-operated CRAC channels inhibitors oppertunites and challenges. Future Medicinal Chemistry. 2016; 8 (7): 817–832.

15. Muik M., Schindl R., Fahrner M., Romanin C. Ca2+ release-activated Ca2+ (CRAC) current, structure, and function. Cell. Mol. Life Sci. 2012; 69: 4163–4176.

16. Niemeyer B. Changing calcium CRAC channel (STIM and Orai) expression, splicing and posttranslational modifiers. Cell Рhysiology. 2016; 310 (9): 701–709.

17. Putney J.W. Calcium Signaling: Deciphering the Calcium– NFAT Pathway. Current Biology. 2011; 22 (3): 87–89.

18. Sammels E., Parys J.B., Missiaen L., Smedt H.D., Bultynck G. Intracellular Ca2+ storage in health and disease: A dynamic equilibrium. Cell Calcium. 2010; 47: 297–314.

19. Amcheslavsky A., Wood M.L., Yeromin A.V., Parker I., Freites J.A., Tobias D.J., Cahalan M.D. Molecular Biophysics of Orai Store-Operated Ca2+ Channels. Biophysical Journal. 2015; 108: 237–246.

20. Krebs J., Agellon L.B., Michalak M. Ca2+ homeostasis and endoplasmic reticulum (ER) stress: An integrated view of calcium signaling. Biochemical and Biophysical Research Communications. 2015; 460: 114–121.

21. Soboloff J., Rothberg B.S., Madesh M., Gil D.L. STIM proteins: dynamic calcium signal transducers. Molecular Cell Biology. 2012; 13: 549–564.

22. Joseph N., Reicher B., Barda-Saad M. The calcium feedback loop and T cell activation: How cytoskeleton networks control intracellular calcium flux. Biochimica et Biophysica Acta. 2014; 1838: 557–568.

23. Shaw P.J., Qu B., Hoth M., Feske S. Molecular regulation of CRAC channel and their role in lymphocyte function. Cell. Mol. Life Sci. 2013; 70: 2637–2656.

24. Wang Y., Deng X., Gill D.L. Calcium Signaling by STIM and Orai: Intimate Coupling Details Revealed. Science Signaling. 2010; 3 (I.148): 1–4.

25. Feske S., Prakriya М. Conformational dynamics of STIM1 activation. Nature Structural & Molecular Biology. 2013; 20 (8): 918–919.

26. Muik M., Fahrner M., Schindl R., Stathopulos P., Frischauf I., Derler I., Plenk P., Lackner B., Groschner K., Ikura M., Romanin C. STIM1 couples to ORAI1 via an intramolecular transition into an extended conformation. The EMBO Journal. 2011. 30: 1678–1689.

27. Rosado J.A., Diez R., Smani T., Jardin I. Stim and orai1 variants in store-operated calcium entry. Front Pharmacology. 2015; 6 (365): 1–9.

28. Stathopulos P., Ihura M. Structural aspects of calcium – release activated calcium channel function. Channels. 2014. 17: 344–353.

29. Palty R., Isacoff E.Y. Cooperative binding of stromal interaction molecule 1 (STIM1) to the N and C termini of calcium release-activated calcium modulator 1 (Orai1). The American Society for Biochemistry and Molecular Biology. 2015; 3: 1–15.

30. Tirado-Lee L., Yamashita M., Prakriya M. Conformational changes in the Orai1 C-terminus evoked by STIM1 binding. Plos One. 2015; 2: 1–17.

31. Hogan P.G., Rao A. Store-operated calcium entry: mechanisms and modulation. Biochemical and Biophysical Research Communications. 2015; 460: 40–49.

32. Deng X., Wang Y., Zhou Y., Soboloff J., Gill D.L. STIM and Orai: dynamic intermembrane coupling to control cellular calcium signals. The Journal of Biological Chemistry. 2009; 284 (34): 22501–22505.

33. Kim J.Y., Muallem S. Unlocking SOAR releases STIM. The EMBO Journal. 2011; 30: 1673–1675.

34. Maus M., Jairamanb A., Stathopulosc P.B., Muike M., Fahrnere M., Weidingera C., Bensona M., Fuchsf S., Romanine C., Ikurac M., Prakriyab M., Feske S. Missense mutation in immunodeficient patients shows the multifunctional roles of coiled-coil domain 3 (CC3) in STIM1 activation. PNAS. 2015; 112 (19): 6206– 6211.

35. Korzeniowski M.K., Baird B., Holowka D. STIM1 activation is regulated by a 14 amino acid sequence adjacent to the CRAC activation domain. AIMS Biophys. 2016; 3 (1): 99–118.

36. Smyth J.S., Hwang S., Tomita T., de Haven W.I., Mer- cer J.C., Putney J.W. Activation and regulation of store-operated calcium entry. Journal of Cellular and Molecular Medicine. 2010; 14 (10): 2337–2349.

37. Xie J., Pan H., Yan J. et al. SOCE and cancer recent progress and new perspectives. International Journal of Cancer. 2016. 138: 2067–2077.

38. Wen J., Huang Y., Xiu H., Shan Z., Xu K. Altered expression of stromal interaction molecule (STIM)-calcium release activated calcium channel protein (ORAI) and inositol-1,4,5-trisphosphate receptors (IP3Rs) in cancer: will they become a new battlefield for oncotherapy? Chin. J. Cancer. 2016; 35 (32): 2–9.

39. Shim A.H., Lee L.T., Prakriya M. Structural and Functional Mechanisms of CRAC Channel Regulation. J. Mol. Biol. 2015; 427: 77–93.

40. Zhou, Soboloff J., Gill D.L., Deng X., Wang Y. Signals Coupling to Control Cellular Calcium STIM and Orai: Dynamic Intermembrane. J. Biol. Chem. 2009; 284: 22501–22505.


Review

For citations:


Lychkovskaya E.V., Shuvaev A.N., Gercog G.E., Trufanova L.V., Shadrina L.B., Semenchukov A.A., Salmina A.B. The role of proteins Stim and Orai as molecular components of the store-dependent current Ca2+ in lymphocytes. Bulletin of Siberian Medicine. 2018;17(1):191-198. (In Russ.) https://doi.org/10.20538/1682-0363-2018-1-191-198

Views: 1055


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)