ELECTROKINETIC PROPERTIES, IN VITRO DISSOLUTION, AND PROSPECTIVE HEMOAND BIOCOMPATIBILITY OF TITANIUM OXIDE AND OXYNITRIDE FILMS FOR CARDIOVASCULAR STENTS
https://doi.org/10.20538/1682-0363-2015-2-55-66
Abstract
A state of titanium oxide and oxynitride coatings on L316 steel has been studied before and after their contact with model biological fluids. Electrokinetic investigation in 1 mmol potassium chloride showed significant (more than 10 times) fall of magnitude of electrostatic potential of thin (200–300 nm) titanium films at pH changing in the range of 5–9 units during 2 h. Nevertheless, zeta-potential of all samples had negative charge under pH > 6.5. Long-term (5 weeks) contact of samples with simulated body fluid (SBF) promoted steel corrosion and titanium oxide and oxynitride films dissolution. On the other hand, sodium and chloride ions precipitation and sodium chloride crystals formation occurred on the samples. Of positive fact is an absence of calcification of tested artificial surfaces in conditions of long-term being in SBF solution. It is supposed decreasing hazard of fast thrombosis and loss of materials functional properties. According to in vitro experiment conducted, prospective biocompatibility of materials tested before and after their contact with SBF lines up following manner: Ti–O–N (1/3) > Ti–O–N (1/1), TiO2 > Steel. It may be explained by: 1) the corrosion-preventive properties of thin titanium oxide and oxynitride films;
2) a store of surface negative charge for Ti–O–N (1/3) film; 3) minor augmentation of mass and thickness of titanium films connected with speed of mineralization processes on the interface of solution/solid body. At the same time, initial (before SBF contact) differences of samples wettability became equal. Modifying effect of model biological fluids on physicochemical characteristics of materials tested (roughness enhancement, a reduction or reversion of surface negative potential, sharp augmentation of surface hydrofilicity) should took into account under titanium oxide and oxynitride films formation and a forecast of their optimal biological properties as the materials for cardiovascular stents.
About the Authors
I. A. KhlusovRussian Federation
Khlusov Igor A.
V. F. Pichugin
Russian Federation
Pichugin Vladimir F.
A. A. Pustovalova
Russian Federation
Pustovalova Alla A.
M. E. Konischev
Russian Federation
Konishchev Maksim Ye.
A. N. Dzyuman
Russian Federation
Dzyuman Anna N.
M. Epple
Germany
Epple Matthias
M. Ulbricht
Germany
Ulbricht Matthias
E. Cicinskas
Russian Federation
Cicinskas Eduardas
V. S. Gulaya
Russian Federation
Gulaya Valeriya S.
V. V. Vikhareva
Russian Federation
Vikhareva Valeriya V.
References
1. Belenkov Yu.I., Samko A.N., Batyraliev T.A., Pershukov I.V. Koronarnaya angioplastika: vzglyad cherez 30 let [Coronary angioplasty: a view through 30 years]. Kardiologia – Cardiology, 2007, no. 4, pp. 4–14.
2. Holmes J. State of the art in coronary intervention. Am. J. Cardiol., 2003, vol. 91, pp. 50A–53A.
3. Virmani R., Guagliumi G., Farb A., Musumeci G., Grieco N., Motta T., Mihalcsik L., Tespili M., Valsecchi O., Kolodgie F.D. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation, 2004, vol. 109, no. 6, pp. 701–705.
4. Gamici G. What is an optimal stent? Biological requirements of drug eluting stents. Kardiovasculare Medizin, 2008, vol. 11, pp. 22–25.
5. Karjalainen P.P., Biancari F., Ylitalo A., Raeber L., Billinger M., Hess O., Airaksinen K.E.J. Pooled analysis of trials comparing titanium-nitride-oxide-coated stents with paclitaxel-eluting stents in patients undergoing coronary stenting. J. Invasive Cardiol., 2010, vol. 22, no. 7, pp. 322–326.
6. Nan H., Ping Y., Xuan C., Yongxang L., Xiaolan Z., Guangjun C., Zihong Z., Feng Z., Yuanru C., Xianghuai L., Tingfei X. Blood compatibility of amorphous titanium oxide films synthesized by ion beam enhanced deposition. Biomaterials, 1998, vol. 19, no. 7–9, pp. 771–776.
7. Wan G., Lv B., Jin G., Maitz M.F., Zhou J., Huang N. Direct correlation of electrochemical behaviors with antithrombogenicity of semiconducting titanium oxide films. J. Biomater. Appl., 2014, vol. 28, no. 5, pp. 719–728. doi: 10.1177/0885328213476911.
8. Subramanian B., Muraleedharan C.V., Ananthakumar R., Jayachandran M. A comparative study of titanium nitride (TiN), titanium oxynitride (TiON) and titanium aluminum nitride (TiAlN), as surface coatings for bio implants. Surf. Coat. Technol., 2011, vol. 205, pp. 5014–5020.
9. Barybin A.A., Zav’yalov A.V., Shapovalo V.I. A nonisothermal physicochemical model of synthesis of oxynitrides by reactive sputtering techniques. Glass Physics and Chemistry, 2012, vol. 38, no. 4, pp. 396–401.
10. Biomaterials science: an introduction to materials in medicine. Ed. by B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons. 2nd ed. San Diego, Elsevier Academic Press, 2004. 851 p.
11. Andrade J.D., Gregonis D.E., Smith L.M., ed. Mittal K.L. Polymer–water interface dynamics. Physicochemical aspects of polymer surfaces. N. Y., Plenum Press, 1981. P. 911–922.
12. Khlusov I.A., Khlusova M.Yu., Pichugin V.F., Sharkeev Yu.P., Legostaeva Ye.V. Artificial niches for stromal stem cells as a potential instrument for the design of the surface of biomimetic osteogenic materials. Russian Physics Journal, 2014, vol. 56, no. 10, pp. 1206–1211.
13. Bykova Yu., Weinhardt V., Kashkarova A., Lebedev S., Baumbach T., Pichugin V., Zaitsev K., Khlusov I. Physical properties and biocompatibility of UHMWPE-derived materials modified by synchrotron radiation. J. Mater Sci.: Mater Med., 2014, vol. 25, no. 8, pp. 1843–1852. doi: 10.1007/s10856-014-5222-4.
14. Yaroshchuk A., Luxbacher T. Interpretation of electrokinetic measurements with porous films: role of electric conductance and streaming current within porous structure. Langmuir, 2010, vol. 26, no. 13, pp. 10882–10889.
15. Dorozhkin S.V., Dorozhkina E.I., Epple M. A model system to provide a good in vitro simulation of biological mineralization. Crystal Growth & Design, 2004, vol. 4, no. 2, pp. 389–395.
16. Khlusov I.A., Slepchenko G.B., Dambaev G.T., Zagrebin L.V., Shestov S.S., Antipov S.A., Feduschak T.A., Khlusova M.Yu., Kokorev O.V., Yermakov A.Ye., Uymin M.A., Nekrasova A.M. Trace Elements and Nanoparticles. N. Y., Nova Science Publishers Inc., 2011. 93 p.
17. Sosudistoe i vnutriorgannoe stentirovanie. Rukovodstvo [Vessel and intraorgan stenting. Guidebook]. Kokov L.S. (ed.) et al. Moscow, Publishing house GRAAL Publ., 2003. 384 p.
18. Cai K., Frant M., Bossert J., Hildebrand G., Liefeith K., Jandt K.D. Surface functionalized titanium thin films: zetapotential, protein adsorption and cell proliferation. Colloids and Surfaces B: Biointerfaces, 2006, vol. 50, pp. 1–8.
19. Hallab N., Merritt K., Jacobs J.J. Metal sensitivity in patients with orthopaedic implants. J. Bone Joint Surg. Am., 2001, vol. 83A, no. 3, pp. 428–436.
20. Hubler R., Cozza A., Marcondes T.L., Souza R.B., Fiori F.F. Wear and corrosion protection of 316-L femoral implants by deposition of thin films. Surf. Coat. Technol., 2001, vol. 1078, pp. 142–144.
21. Mani G., Feldman M.D., Patel D., Agrawal C.M. Coronary stents: A materials perspective. Biomaterials, 2007, vol. 28, pp. 1689–1710.
22. Windecker S., Mayer I., De Pasquale G., Maier W, Dirsch O., De Groot P., Wu Y.P., Noll G., Leskosek B., Meier B., Hess O.M. Stent coating with titanium-nitride-oxide for reduction of neointimal hyperplasia. Circulation, 2001, vol. 104, pp. 928–933.
23. Yi X., Nan H., Hong S. Blood Compatibility of Titanium Oxide Films Modified by Hydrogen Plasma Reduction. Journal of Inorganic Materials, 2008, vol. 23, no. 6, pp. 1246–1252.
24. Hamdan M., Blanco L., Khraisat A., Tresguerres I.F. Influence of titanium surface charge on fibroblast adhesion. Clin. Implant. Dent. Relat. Res., 2006, vol. 8, no. 1, pp. 32–38.
25. Qiu Q., Sayer M., Kawaja M., Shen X., Davies J.E. Attachment, morphology, and protein expression of rat marrow stromal cells cultured on charged substrate surfaces. J. Biomed. Mater. Res., 1998, vol. 42, no. 1, pp. 117–127.
26. Pilling D., Vakil V., Gomer R.H. Improved serum-free culture conditions for the differentiation of human and murine fibrocytes. J. Immunol. Methods, 2009, vol. 351, no. 1–2, pp. 62–70.
27. Webb K., Hlady V., Tresco P. Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytosquelette organization. J. Biomed. Mater. Res., 1998. V. 41. P. 422–430.
28. Kovacs P., Davidson G.A., eds. Brown S.A. and Lemons J.E. Medical Applications of Titanium and its Alloys: The Material and Biological Issues. ASTM STP 1272. Am. Society for Testing and Materials, 1996. P. 163–178.
29. Prime K.L., Whitesides G.M. Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): A model system using self-assembled monolayers. J. Am. Chem. Soc., 1993, vol. 115, pp. 10714–10721.
30. Ruardy T.G., Schakenraad J.M., Van der Mei H.C., Busscher H.J. Adhesion and spreading of human skin fibroblasts on physocochemically characterized gradient surfaces. J. Biomed. Mater. Res., 1995, vol. 29, pp. 1415–1423.
31. Hyde G.K., Stewart S.M., Scarel G., Parsons G.N., Shih C.C., Shih C.M., Lin S.J., Su Y.Y., Monteiro-Riviere N.A., Narayan R.J. Atomic layer deposition of titanium dioxide on cellulose acetate for enhanced hemostasis. Biotechnol. J., 2011, vol. 6, no. 2, pp. 213–223. doi: 10.1002/biot.20100034.
32. Yang W.E., Hsu M.L., Lin M.C., Chen Z.H., Chen L.K., Huang H.H. Nano/submicron-scale TiO2 network on titanium surface for dental implant application. J. Alloys. Compd., 2009, vol. 479, no. 1–2, pp. 642–647.
33. Demetrescu I., Pirvu C., Mitran V. Effect of nanotopographical features of Ti/TiO(2) electrode surface on cell response and electrochemical stability in artificial saliva. Bioelectrochemistry, 2010, vol. 79, no. 1, pp. 122–129. doi: 10.1016/j.bioelechem.2010.02.001.
34. Ponsonnet L., Reybier K., Jaffrezic N., Comte F., Lagneau C., Lissac M., Martelet C. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Materials Science and Engineering C, 2003, vol. 23, pp. 551–560.
Review
For citations:
Khlusov I.A., Pichugin V.F., Pustovalova A.A., Konischev M.E., Dzyuman A.N., Epple M., Ulbricht M., Cicinskas E., Gulaya V.S., Vikhareva V.V. ELECTROKINETIC PROPERTIES, IN VITRO DISSOLUTION, AND PROSPECTIVE HEMOAND BIOCOMPATIBILITY OF TITANIUM OXIDE AND OXYNITRIDE FILMS FOR CARDIOVASCULAR STENTS. Bulletin of Siberian Medicine. 2015;14(2):55-66. (In Russ.) https://doi.org/10.20538/1682-0363-2015-2-55-66