Preview

Bulletin of Siberian Medicine

Advanced search

NUMERICAL SIMULATION OF ELECTRICAL IMPEDANCE TOMOGRAPHY PROBLEM AND STUDY OF APPROACH BASED ON FINITE VOLUME METHOD

https://doi.org/10.20538/1682-0363-2014-4-156-164

Abstract

This research has been aimed to carry out a study of peculiarities that arise in a numerical simulation of the electrical impedance tomography (EIT) problem. Static EIT image reconstruction is sensitive to a measurement noise and approximation error. A special consideration has been given to reducing of the approximation error, which originates from numerical implementation drawbacks. This paper presents in detail two numerical approaches for solving EIT forward problem. The finite volume method (FVM) on unstructured triangular mesh is introduced. In order to compare this approach, the finite element (FEM) based forward solver was implemented, which has gained the most popularity among researchers. The calculated potential distribution with the assumed initial conductivity distribution has been compared to the analytical solution of a test Neumann boundary problem and to the results of problem simulation by means of ANSYS FLUENT commercial software. Two approaches to linearized EIT image reconstruction are discussed. Reconstruction of the conductivity distribution is an ill-posed problem, typically requiring a large amount of computation and resolved by minimization techniques. The objective function to be minimized is constructed of measured voltage and calculated boundary voltage on the electrodes. A classical modified Newton type iterative method and the stochastic differential evolution method are employed. A software package has been developed for the problem under investigation. Numerical tests were conducted on simulated data. The obtained results could be helpful to researches tackling the hardware and software issues for medical applications of EIT.

About the Authors

Ye. S. Sherina
National Research Tomsk State University, Tomsk
Russian Federation
Sherina Yekaterina S


A. V. Starchenko
National Research Tomsk State University, Tomsk
Russian Federation
Starchenko Aleksandr V.


References

1. Pekker Ja.S., Brazovskij K.S., Usov V.Ju., Plotnikov M.P., Umanskij O.S. Electrical impedance tomography. Tomsk, Izd-vo NTL Publ., 2004. 192 p. (in Russian).

2. Lionheart W., Polydorides N., Borsic A. Electrical Impedance Tomography: Methods, History and Applications. Manchester, 2004. 62 p.

3. Brown B.H. Electrical impedance tomography (EIT): a re-view. J. Med. Eng. Technol., 2003. vol. 27, no. 3, pp. 97–108. doi: 10.1080/0309190021000059687.

4. Holder D.S. Medical impedance tomography and process impedance tomography: a brief review. Meas. Sci. Technol., 2001, vol. 12, pp. 991–996.

5. Hope T.A., Iles S.E. Technology review: The use of electrical impedance scanning in the detection of breast cancer. Breast Cancer Res., 2004, vol. 6, pp. 69–74. doi: 10.1186/bcr744.

6. Ybarra G.A., Liu Q.H., Ye G., Lim K.H., Lee J.H., Joines W.T., George R.T. Breast Imaging using Electrical Impedance Tomography (EIT). Emerging Technologies in Breast Imaging and Mammography. Ed. J. Suri, R.M. Rangayyan, S. Laxminarayan. American Scientific Publishers, 2006.

7. Pak D.D., Rozhkova N.I., Kireeva M.N., Ermoshchenko-va M.V., Nazarov A.A., Fomin D.K., Rubtsova N.A. Diag-nosis of Breast Cancer Using Electrical Impedance Tomog-raphy. Biomed. Eng., 2012, vol. 46, no. 4, pp. 154–157. doi: 10.1007/s10527-012-9292-7.

8. Harris N.D., Brown B.H., Barber D.C. Continuous monitor-ing of lung ventilation with electrical impedance tomography. IEEE Eng. Med. Biol. Society, 1992, vol. 5, pp. 1754–1755. doi: 10.1109/IEMBS.1992.5762025.

9. Eyuboglu B.M., Brown B.H., Barber D.C. In vivo imaging of cardiac related impedance changes. IEEE Eng. Med. Biol. Mag., 1989, vol. 8, no. 1, pp. 39–45. doi: 10.1109/51.32404.

10. Newell J.C., Isaacson D., Cheney M., Saulnier G.J., Gisser D.G., Goble J.C., Cook R.D., Edic P.M. Impedance images of the chest. Proc. 14th Int. Conf. IEEE Eng. Med. Biol. Society, 1992, vol. 5, pp. 1752–1753. doi: 10.1109/IEMBS.1992.5762024.

11. Holder D.S. Electrical impedance tomography (EIT) of brain function. Brain Topography, 1992, vol. 5, no. 2, pp. 87–93. doi: 10.1007/BF01129035.

12. Bagshaw A.P. et al. Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method. Neuro Image, 2003, vol. 20, no. 2, pp. 752–764. doi: 10.1016/S1053-8119(03)00301-X.

13. Tehrani J.N., Anderson C., Jin C., Schaik A., Holder D., McEwan A. Feasibility of electrical impedance tomography in haemorrhagic stroke treatment using adaptive mesh. J. Phys.: Conf. Ser., 2010, vol. 224, no. 1, pp. 2065–2068. doi: 10.1088/1742-6596/224/1/012065.

14. Smallwood R.H., Mangnall Y.F., Leathard A.D. Transport of gastric contents. Physiol. Meas., 1994, vol. 15, suppl. 2A, pp. 175–188. doi: 10.1088/0967-3334/15/2A/023.

15. Henderson R.P., Webster J.G. An Impedance Camera for Spatially Specific Measurements of the Thorax. IEEE Trans. Biomed. Eng., 1978, vol. 25, no. 3, pp. 250–254. doi: 10.1109/TBME.1978.326329.

16. Barber D.C., Brown B.H. Applied Potential Tomography. J. Phys. E: Sci. Instrum., 1984, vol. 17, no. 9, pp. 723–733. doi: 10.1088/0022-3735/17/9/002.

17. Kim C.Y., Kang J.M., Kim J.H., Choi B.Y., Kim K.Y. Modi-fied Newton-Raphson method using a region of interest in electrical impedance tomography. J. Korean Phys. Society, 2012, vol. 61, no. 8, pp. 1199–1205. doi: 10.3938/jkps.61.1199.

18. Cheney M., Isaacson D., Newell J.C., Simske S., Goble J. NOSER: An algorithm for solving the inverse conductivity problem. Int. J. Img. Sys. Technol., 1990, vol. 2, no. 2, pp. 66–75. doi: 10.1002/ima.1850020203

19. Yorkey T.J., Webster J.G., Tompkins W.J. Comparing Re-construction Algorithms for Electrical Impedance Tomogra-phy. IEEE Trans. Biomed. Eng., 1987, vol. 34, no. 11, pp. 843–852. doi: 10.1109/TBME.1987.326032.

20. Kim H.C., Boo C.J. Intelligent Optimization Algorithm Ap-proach to Image Reconstruction in Electrical Impedance Tomography. Lecture Notes in Computer Science., 2006, vol. 4221, pp. 856–859. doi: 10.1007/11881070_113.

21. Li Y. Resistivity Parameters Estimation Based on 2D Real Head Model Using Improved Differential Evolution Algorithm. Proc. 28th Int. Conf. IEEE Eng. Med. Biol. Society., 2006, pp. 6720–6723. doi: 10.1109/IEMBS.2006.260930.

22. Somersalo E., Cheney M., Isaacson D. Existence and uniqueness for electrode models for electric current computed tomography. SIAM J. Appl. Math., 1992, vol. 52, no. 4, pp. 1023–1040.

23. Sherina E.S., Starchenko A.V. Chislennyj metod rekon-strukcii raspredelenija jelektricheskogo impedansa vnutri bi-ologicheskih ob’ektov po izmerenijam toka na granice. Vestnik Tom. gos. un-ta. Matematika i mehanika, 2012, no. 4, pp. 36–49 (in Russian).

24. Dong G., Zou J., Bayford R.H., Xinshan M., Shangkai G., Weili Y., Manling G. The comparison between FVM and FEM for EIT forward problem. IEEE Trans. Magnetics, 2005, vol. 41, no. 5, pp. 1468–1471.doi: 10.1109/TMAG.2005.844558.


Review

For citations:


Sherina Ye.S., Starchenko A.V. NUMERICAL SIMULATION OF ELECTRICAL IMPEDANCE TOMOGRAPHY PROBLEM AND STUDY OF APPROACH BASED ON FINITE VOLUME METHOD. Bulletin of Siberian Medicine. 2014;13(4):156-164. (In Russ.) https://doi.org/10.20538/1682-0363-2014-4-156-164

Views: 970


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)