Features of survival analysis on patients on the «waiting list» for kidney transplantation
https://doi.org/10.20538/1682-0363-2019-2-215-222
Abstract
Survival analysis is one of the most common methods of statistical analysis in medicine. The statistical analysis of the transplantation (or death) probability dependent on the waiting time on the "waiting list" is a rare case when the survival analysis is used to estimate the time before the event rather than to indirectly assess the risks. However, for an assessment to be adequate, the reason for censoringmust be independent of the outcome of interest. Patients on the waiting list are not only at risk of dying, they can be excluded from the waiting list due to deterioration of the comorbid background or as a result of kidney transplantation. Kaplan – Meier, Nelson – Aalen estimates, as well as a cause-specific Cox proportional hazards regression model, are consciously biased estimates of survival in the presence of competing risks. Since competing events are censored, it is impossible to directly assess the impact of covariates on their frequency, because there is no direct relationship between the regression coefficients and the intensity of these events. The determination of the median waiting time on the basis of such analysis generates a selection bias, which inevitably leads to a biased assessment.
Thus, in presence of competing risks, these methods allow us to investigate the features of cause-and-effect relationships, but do not allow us to make a prediction of the individual probability of a particular event based on the value of its covariates. In the regression model of competing risks, the regression coefficients are monotonically related to the cumulative incidence function and the competing events have a direct impact on the regression coefficients. Its significant advantage is the additive nature of the cumulative incidence functions of all possible events. In the study of etiological associations, it is better to use Cox regression model, which allows to estimate the size of the effect of various factors. The regression model of competing risks, in turn, has a greater prognostic value and allows to estimate the probability of a specific outcome within a certain time in a single patient.
Keywords
About the Author
A. B. ZulkarnaevRussian Federation
Zulkarnaev Alexey B., DM, Principal Researcher, Surgical Department of Transplantation and Dialysis
Building 6, 61/2, Schepkina Str., 129110, Moscow
References
1. Kaplan E.L., Meier P. Non-parametric estimation from incomplete observations. J. Am. Stat. Assoc. 1958; 53 (282): 457–481.
2. Stel V.S., Dekker F.W., Tripepi G., Zoccali C., Jager K.J. Survival analysis I: the Kaplan – Meier method. Nephron Clin. Pract. 2011; 119 (1): c83–88. DOI: 10.1159/000324758.
3. Hobbs B.P. On nonparametric hazard estimation. J. Biom. Biostat. 2015; 6 (2): 232. DOI: 10.4172/2155-6180.1000232.
4. Xian Liu. Survival analysis: models and applications. John Wiley & Sons, 2012: 457.
5. Colosimo E., Ferreira F., Oliveira M., Sousa C. Empirical comparisons between Kaplan – Meier and Nelson – Aalen survival function estimators. J. Stat. Comput. Simul. 2002; 72 (4): 299–308. DOI: 10.1080/00949650212847.
6. Saranya P., Karthikeyan S.M. A сomparison study of Kaplan – Meier and Nelson – Aalen methods in survival analysis. International Journal for Research in Emerging Science and Technology. 2015; 2 (11): 34–38.
7. Cox D.R. The regression analysis of binary sequences. Journal of the Royal Statistical Society. Series B (Methodological). 1958; 20 (2): 215–242.
8. Cox D.R. Regression models and life-tables. Journal of the Royal Statistical Society, Series B. 1972; 34 (2): 187–220.
9. Austin P.C., Lee D.S., Fine J.P. Introduction to the analysis of survival data in the presence of competing risks. Circulation. 2016; 133 (6): 601–609. DOI: 10.1161/CIRCULATIONAHA.115.017719.
10. Stel V.S., Dekker F.W., Tripepi G., Zoccali C., Jager K.J. Survival analysis II: Cox regression. Nephron Clin. Pract. 2011; 119 (3): c255–260. DOI: 10.1159/000328916.
11. Austin P.C. Generating survival times to simulate Cox proportional hazards models with time-varying covariates. Stat. Med. 2012; 31 (29): 3946–3958. DOI: 10.1002/sim.5452.
12. Gao H., Liu Y., Zhang T., Yang R., Prows D.R. Parametric proportional hazards model for mapping genomic imprinting of survival traits. J. Appl. Genet. 2013; 54 (1):79–88. DOI: 10.1007/s13353-012-0120-2.
13. Wolbers M., Koller M.T., Stel V.S., Schaer B., Jager K.J., Leffondrй K., Heinze G. Competing risks analyses: objectives and approaches. Eur. Heart J. 2014; 35 (42): 2936–2941. DOI: 10.1093/eurheartj/ehu131.
14. Haller B., Schmidt G., Ulm K. Applying competing risks regression models: an overview. Lifetime Data Anal. 2013; 19 (1): 33–58. DOI: 10.1007/s10985-012-9230-8.
15. Prentice R.L., Kalbfleisch J.D., Peterson A.V.Jr., Flournoy N., Farewell V.T., Breslow N.E. The analysis of failure times in the presence of competing risks. Biometrics. 1978 Dec.; 34 (4): 541–554.
16. Noordzij M., Leffondrй K., van Stralen K.J., Zoccali C., Dekker F.W., Jager K.J. When do we need competing risks methods for survival analysis in nephrology? Nephrol. Dial. Transplant. 2013; 28 (11): 2670–2677. DOI: 10.1093/ndt/gft355.
17. Fine J.P., Gray R.J. A proportional hazards model for the subdistribution of a competing risk. J. Am. Stat. Assoc. 1999; 94 (446): 496–509.
18. Dianatkhah M., Rahgozar M., Talaei M., Karimloua M., Sadeghi M., Oveisgharan S., Sarrafzadegan N. Comparison of competing risks models based on cumulative incidence function in analyzing time to cardiovascular diseases. ARYA Atheroscler. 2014; 10 (1): 6–12.
19. Andersen P.K., Geskus R.B., de Witte T., Putter H. Competing risks in epidemiology: possibilities and pitfalls. Int. J. Epidemiol. 2012 June; 41 (3): 861–870. DOI: 10.1093/ije/dyr213.
20. Arce C.M., Lenihan C.R., Montez-Rath M.E., Winkelmayer W.C. Comparison of longer-term outcomes after kidney transplantation between Hispanic and non-Hispanic whites in the United States. Am. J. Transplant. 2015; 15 (2): 499–507. DOI: 10.1111/ajt.13043.
21. Sapir-Pichhadze R., Pintilie M., Tinckam K.J., Laupacis A., Logan A.G., Beyene J., Kim S.J. Survival analysis in the presence of competing risks: The example of waitlisted kidney transplant candidates. Am. J. Transplant. 2016 July; 16 (7): 1958–1966. DOI: 10.1111/ajt.13717.
22. Arce C.M., Goldstein B.A., Mitani A.A., Lenihan C.R., Winkelmayer W.C. Differences in access to kidney transplantation between Hispanic and non-Hispanic whites by geographic location in the United States. Clin. J. Am. Soc. Nephrol. 2013; 8 (12): 2149–2157. DOI: 10.2215/CJN.01560213.
23. Kim H., An J.N., Kim D.K., Kim M.H., Kim H., Kim Y.L., Park K.S., Oh Y.K., Lim C.S., Kim Y.S., Lee J.P. CRC for ESRD investigators. Elderly peritoneal dialysis compared with elderly hemodialysis patients and younger peritoneal dialysis patients: Competing risk analysis of a Korean prospective cohort study. PLoS One. 2015; 10 (6):e0131393. DOI: 10.1371/journal.pone.0131393.
24. Erişoğlu Ü., Erişoğlu M., Erol H. A mixture model of two different distributions approach to the analysis of heterogeneous survival data. International Journal of Computational and Mathematical Sciences. 2011; 5 (2): 75–79.
25. Yusuf Abbakar Mohammed, Bidin Yatim, Suzilah Ismail. A parametric mixture model of three different distributions: An approach to analyse heterogeneous survival data. AIP Conference Proceedings. 2014: 1605–1040.DOI: 10.1063/1.4887734.
26. Lau B., Cole S.R., Moore S.R., Gange S.J. Evaluating competing adverse and beneficial outcomes using a mixture model. Stat. Med. 2008; 27 (21): 4313–4327. DOI:10.1002/sim.3293.
27. Larson M.G., Dinse G.E. A mixture model for the regression analysis of competing risks data. J. of the Royal Stat. Soc. Ser. C. 1985; 34: 201–211.
28. Kuk A.Y.C. A semiparametric mixture model for the analysis of competing risks data. Austral. J. Statist. 1992; 34: 169–180.
29. Nicolaie M.A., van Houwelingen H.C., Putter H. Vertical modeling: a pattern mixture approach for competing risks modeling. Stat. Med. 2010; 29 (11): 1190–1205. DOI: 10.1002/sim.3844.
30. Nicolaie M.A., Taylor J.M.G., Legrand C. Vertical modeling: analysis of competing risks data with a cure fraction. Lifetime Data Anal. 2019; 25 (1): 1–25. DOI:10.1007/s10985-018-9417-8.
31. Trébern-Launay K., Kessler M., Bayat-Makoei S., Quйrard A.H., Brianзon S., Giral M., Foucher Y. Horizontal mixture model for competing risks: a method used in waitlisted renal transplant candidates. Eur. J. Epidemiol. 2018; 33 (3): 275–286. DOI: 10.1007/s10654-017-0322-3.
32. Andersen P.K., Keiding N. Interpretability and importance of functionals in competing risks and multistate models. Stat. Med. 2012; 31 (11–12): 1074–1088. DOI:10.1002/sim.4385.
33. Hart A., Smith J.M., Skeans M.A., Gustafson S.K., Wilk A.R., Robinson A., Wainright J.L., Haynes C.R., Snyder J.J., Kasiske B.L., Israni A.K. OPTN/SRTR 2016 Annual Data Report: Kidney. Am. J. Transplant. 2018; 18 Suppl. 1: 18–113. DOI: 10.1111/ajt.14557.
34. Schold J., Srinivas T.R., Sehgal A.R., Meier-Kriesche H.U. Half of kidney transplant candidates who are older than 60 years now placed on the waiting list will die before receiving a deceased-donor transplant. Clin. J. Am. Soc. Nephrol. 2009; 4 (7): 1239–1245. DOI: 10.2215/CJN.01280209.
35. Lau B., Cole S.R., Gange S.J. Competing risk regression models for epidemiologic data. Am. J. Epidemiol. 2009; 170 (2): 244–256. DOI: 10.1093/aje/kwp107.
Review
For citations:
Zulkarnaev A.B. Features of survival analysis on patients on the «waiting list» for kidney transplantation. Bulletin of Siberian Medicine. 2019;18(2):215-222. https://doi.org/10.20538/1682-0363-2019-2-215-222