Preview

Bulletin of Siberian Medicine

Advanced search

MITOCHONDRIAL PROTEIN PROFILE AND ITS ROLE IN PATHOLOGIC PROCESSES

https://doi.org/10.20538/1682-0363-2013-3-5-17

Abstract

Mitochondria import hundreds of different precursor proteins from the cytosol, and only 13 proteins are encoded by mtDNA itself. Recent investigations demonstrated real size of mitochondrial proteome and complexity of their functions There are many methods using for mitochondrial proteome profiling, that help to understand a molecular mechanisms of mitochondrial functions and identify the causes of disruptions that lead to different disorders. In this review we discuss a recent data in the field of mitochondrial proteomics.

About the Authors

Ye. A. Kosterina
Immanuel Kant Baltic Federal University, Kaliningrad
Russian Federation


I. I. Kozenkov
Immanuel Kant Baltic Federal University, Kaliningrad
Russian Federation


V. A. Kasymov
Immanuel Kant Baltic Federal University, Kaliningrad
Russian Federation


P. A. Kamensky
Immanuel Kant Baltic Federal University, Kaliningrad
Russian Federation


I. N. Dominova
Immanuel Kant Baltic Federal University, Kaliningrad
Russian Federation


Yu. A. Korolyova
Immanuel Kant Baltic Federal University, Kaliningrad
Russian Federation


V. Ye. Patrusheva
Immanuel Kant Baltic Federal University, Kaliningrad
Russian Federation


R. S. Bogachev
Immanuel Kant Baltic Federal University, Kaliningrad
Russian Federation


L. S. Litvinova
Immanuel Kant Baltic Federal University, Kaliningrad
Russian Federation


S. V. Babak
Immanuel Kant Baltic Federal University, Kaliningrad
Russian Federation


Ye. M. Moiseeva
Immanuel Kant Baltic Federal University, Kaliningrad
Russian Federation


Ye. A. Bogdanov
Immanuel Kant Baltic Federal University, Kaliningrad
Russian Federation


O. A. Mukhortova
Immanuel Kant Baltic Federal University, Kaliningrad
Russian Federation


Ya. S. Vavilina
Immanuel Kant Baltic Federal University, Kaliningrad
Russian Federation


T. A. Mikhalchenkova
Immanuel Kant Baltic Federal University, Kaliningrad
Russian Federation


M. V. Patrushev
Immanuel Kant Baltic Federal University, Kaliningrad
Russian Federation
Patrushev Maksim V. 


References

1. Anderson S., Bankier A.T., Barrell B.G., de Bruijn M.H., Coulson A.R. et al. Sequence and organization of the human mitochondrial genome. Nature, 1981, 290, pp. 457–465.

2. Montoya J., Ojala D., Attardi G. Distinctive features of the 5t-terminal sequences of the human mitochondrial mRNAs. Nature, 1981, 290, pp. 465–470.

3. Ojala D., Montoya J., Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature, 1981, 290, pp. 470–474.

4. Holt I.J., Harding A.E., Morgan-Hughes J.A. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature, 1988, 331, pp. 717–719.

5. Wallace D.C., Singh G., Lott M.T., Hodge J.A., Schurr T.G. et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science, 1988, 242, pp. 1427–1430.

6. Wallace D.C., Zheng X.X., Lott M.T., Shoffn er J.M., Hodge J.A. et al. Familial mitochondrial encephalomyopathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease. Cell, 1988, 55, pp. 601–610.

7. Ruiz-Pesini E., Lott M.T., Procaccio V., Poole J.C., Brandon M.C. et al. An enhanced MITOMAP with a global mtDNA mutational phylogeny. Nucleic Acids Res., 2007, 35, D823–28.

8. McFarland R., Elson J.L., Taylor R.W., Howell N., Turnbull D.M. Assigning pathogenicity to mitochondrial tRNA mutations: when “definitely maybe” is not good enough. Trends Genet., 2004, 20, pp. 591–596.

9. Mitchell A.L., Elson J.L., Howell N., Taylor R.W., Turnbull D.M. Sequence variation in mitochondrial complex I genes: Mutation or polymorphism? J. Med. Genet., 2006, 43, pp. 175–179.

10. Montoya J., Lopez-Gallardo E., Diez-Sanchez C., LopezPerez M.J., Ruiz-Pesini E. 20 years of human mtDNA pathologic point mutations: carefully reading the pathogenicity criteria. Biochim. Biophys. Acta, 2009, 1787, pp. 476–483.

11. DiMauro S., Schon E.A. Mitochondrial respiratory-chain diseases. N. Engl. J. Med., 2003, 348, pp. 2656–2668.

12. DiMauro S., Davidzon G. Mitochondrial DNA and disease. Ann. Med., 2005, 37, pp. 222–232.

13. Lopez M.F., Kristal B.S., Chernokalskaya E., Lazarev A., Shestopalov A.I. et al. High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation. Electrophoresis, 2000, 21, pp. 3427–3440.

14. Andersson S.G., Zomorodipour A., Andersson J.O., Sicheritz-Ponten T., Alsmark U.C. et al. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature, 1998, 396, pp. 133–140.

15. Clamp M., Fry B., Kamal M., Xie X., Cuff J. et al. Distinguishing protein-coding and noncoding genes in the human genome. Proc. Natl. Acad. Sci. USA, 2007, 104, pp. 19428–19433.

16. Chacinska A., Koehler C.M., Milenkovic D., Lithgow T., Pfanner N. Importing mitochondrial proteins: machineries and mechanisms. Cell, 2009, 138, pp. 628–644.

17. Wiedemann N., Pfanner N., Ryan M.T. The three modules of ADP/ATP carrier cooperate in receptor recruitment and translocation into mitochondria. EMBO J., 2001. 20, pp. 951–960.

18. Banci L., Bertini I., Cefaro C., Ciofi-Baffoni S., Gallo A. et al. MIA40 is an oxidoreductase that catalyzes oxidative protein folding in mitochondria. Nat. Struct. Mol. Biol., 2009, 16, pp. 198–206.

19. Milenkovic D., Ramming T., Muller J.M., Wenz L.S., Gebert N. et al. Identification of the signal directing Tim9 and Tim10 into the intermembrane space of mitochondria. Mol. Biol. Cell, 2009, 20, pp. 2530–2539.

20. Emanuelsson O., Nielsen H., Brunak S., von Heijne G. Predicting subcellular localization of proteins based on their Nterminal amino acid sequence. J. Mol. Biol., 2000, 300, pp. 1005–1016.

21. Guda C. pTARGET: a web server for predicting protein subcellular localization. Nucleic Acids Res., 2006, 34, W210–13.

22. Nakai K., Horton P. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci., 1999, 24, pp. 34–36.

23. Bannai H., Tamada Y., Maruyama O., Nakai K., Miyano S. Extensive feature detection of N-terminal protein sorting signals. Bioinformatics, 2002, 18, pp.298–305.

24. Small I., Peeters N., Legeai F., Lurin C. Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics., 2004, 4, pp. 1581–1590.

25. King B.R., Guda C. ngLOC: an n-gram-based Bayesian method for estimating the subcellular proteomes of eukaryotes. Genome Biol., 2007, 8, R68.

26. Kumar M., Verma R., Raghava G.P. Prediction of mitochondrial proteins using support vector machine and hidden Markov model. J. Biol. Chem., 2006, 281, pp. 5357–5363.

27. Guda C., Fahy E., Subramaniam S. MITOPRED: a genomescale method for prediction of nucleus-encoded mitochondrial proteins. Bioinformatics, 2004, 20, pp. 1785–1794.

28. Claros M.G., Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur. J. Biochem., 1996, 241, pp. 779–786.

29. Gaston D., Tsaousis A.D., Roger A.J. Predicting proteomes of mitochondria and related organelles from genomic and expressed sequence tag data. Methods Enzymol., 2009, 457, pp. 21–47.

30. Palmfeldt J., Vang S., Stenbroen V., Pedersen C.B., Christensen J.H. et al. Mitochondrial proteomics on human fibroblasts for identification of metabolic imbalance and cellular stress. Proteome Sci., 2009, 7, pp. 20.

31. Rabilloud T., Kieffer S., Procaccio V., Louwagie M., Courchesne P.L. et al. Two-dimensional electrophoresis of human placental mitochondria and protein identification by mass spectrometry: toward a human mitochondrial proteome. Electrophoresis, 1998, 19, pp. 1006–1014.

32. Scheffler N.K., Miller S.W., Carroll A.K., Anderson C., Davis R.E. et al. Two-dimensional electrophoresis and mass spectrometric identification of mitochondrial proteins from an SH-SY5Y neuroblastoma cell line. Mitochondrion, 2001, 1, pp. 161–179.

33. Taylor S.W., Fahy E., Zhang B., Glenn G.M., Warnock D.E. et al. Characterization of the human heart mitochondrial proteome. Nat. Biotechnol., 2003, 21, pp. 281–286.

34. Mootha V.K., Bunkenborg J., Olsen J.V., Hjerrild M., Wisniewski J.R. et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell, 2003, 115, 629–640.

35. Kislinger T., Cox B., Kannan A., Chung C., Hu P. et al. Global survey of organ and organelle protein expression in mouse: combined proteomic and transcriptomic profiling. Cell, 2006, 125, pp. 173–186.

36. Adachi J., Kumar C., Zhang Y., Mann M. In-depth analysis of the adipocyte proteome by mass spectrometry and bioinformatics. Mol. Cell Proteomics, 2007, 6, pp. 1257–1273.

37. Johnson D.T., Harris R.A., French S., Blair P.V., You J. et al. Tissue heterogeneity of the mammalian mitochondrial proteome. Am. J. Physiol. Cell Physiol., 2007, 292, C689–697.

38. Forner F., Foster L.J., Campanaro S., Valle G., Mann M. Quantitative proteomic comparison of rat mitochondria from muscle, heart, and liver. Mol. Cell Proteomics, 2006, 5, pp. 608–619.

39. Foster L.J., de Hoog C.L., Zhang Y., Zhang Y., Xie X. et al. A mammalian organelle map by protein correlation profiling. Cell, 2006, 125, pp. 187–199.

40. Huh W.K., Falvo J.V., Gerke L.C., Carroll A.S., Howson R.W. et al. Global analysis of protein localization in budding yeast. Nature, 2003, 425, pp. 686–691.

41. Kumar A., Agarwal S., Heyman J.A., Matson S., Heidtman M. et al. Subcellular localization of the yeast proteome. Genes Dev., 2002, 16, pp. 707–719.

42. Ozawa T., Sako Y., Sato M., Kitamura T., Umezawa Y. A genetic approach to identifying mitochondrial proteins. Nat. Biotechnol., 2003, 21, pp. 287–293.

43. Mehrle A., Rosenfelder H., Schupp I., del Val C., Arlt D. et al. The LIFEdb database in 2006. Nucleic Acids Res., 2006, 34, D415–18.

44. Smith A.C., Robinson A.J. MitoMiner, an integrated database for the storage and analysis of mitochondrial proteomics data. Mol. Cell Proteomics, 2009, 8, pp. 1324–1337.

45. DeRisi J.L., Iyer V.R., Brown P.O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science, 1997, 278, pp. 680–686.

46. Dimmer K.S., Fritz S., Fuchs F., Messerschmitt M., Weinbach N. et al. Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae. Mol. Biol. Cell, 2002, 13, pp. 847–853.

47. Steinmetz L.M., Scharfe C., Deutschbauer A.M., Mokranjac D., Herman Z.S. et al. Systematic screenfor human disease genes in yeast. Nat. Genet., 2002, 31, pp. 400–404.

48. Calvo S., Jain M., Xie X., Sheth S.A., Chang B. et al. Systematic identification of human mitochondrial disease genes through integrative genomics. Nat. Genet., 2006, 38, pp. 576–582.

49. Mootha V.K., Handschin C., Arlow D., Xie X., St Pierre J. et al. Erralpha and Gabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc. Natl. Acad. Sci. USA, 2004, 101, pp. 6570–6575.

50. Mootha V.K., Lindgren C.M., Eriksson K.F., Subramanian A., Sihag S. et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet., 2003, 34, pp. 267–273.

51. Foster L.J., de Hoog C.L., Zhang Y., Zhang Y., Xie X. et al. A mammalian organelle map by protein correlation profiling. Cell, 2006, 125, pp. 187–199.

52. Vieira H.L., Haouzi D., El Hamel C., Jacotot E., Belzacq A.S. et al. Permeabilization of the mitochondrial inner membrane during apoptosis: impact of the adenine nucleotide translocator. Cell Death Differ., 2000, 7, pp. 1146–1154.

53. Tong W.H., Rouault T. Distinct iron-sulfur cluster assembly complexes exist in the cytosol and mitochondria of human cells. EMBO J., 2000, 19, pp. 5692–5700.

54. Luo X., Budihardjo I., Zou H., Slaughter C., Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell, 1998, 94, pp. 481–490.

55. Nilsson R., Schultz I.J., Pierce E.L., Soltis K.A., Naranuntarat A. et al. Discovery of genes essential for heme biosynthesis through large-scale gene expression analysis. Cell Metab., 2009, 10, pp. 119–130.

56. Huynen M.A., de Hollander M., Szklarczyk R. Mitochondrial proteome evolution and genetic disease. Biochim. Biophys. Acta., 2009, 1792, pp. 1122–1129.

57. Perocchi F., Jensen L.J., Gagneur J., Ahting U., von Mering C. et al. Assessing systems properties of yeast mitochondria through an interaction map of the organelle. PLoS Genet., 2006, 2:e170.

58. Hiltunen J.K., Schonauer M.S., Autio K.J., Mittelmeier T.M., Kastaniotis A.J., Dieckmann C.L. Mitochondrial fatty acid synthesis type II: more than just fatty acids. J. Biol. Chem., 2009, 284, pp. 9011–9015.

59. Patrushev M., Kasymov V., Patrusheva V., Ushakova T., Gogvadze V., Gaziev A. Mitochondrial permeability transition triggers the release of mtDNA fragments. Cell Mol. Life Sci., 2004, 61 (24), pp. 3100–3103.

60. Forner F., Kumar C., Luber C.A., Fromme T., Klingenspor M., Mann M. Proteome differences between brown and white fat mitochondria reveal specialized metabolic functions. Cell Metab., 2009, 10, 324–

61. Capaldi R.A., Halphen D.G., Zhang Y.Z., Yanamura W. Complexity and tissue specificity of the mitochondrial respiratory chain. J. Bioenerg. Biomembr., 1988, 20, pp. 291–311.

62. Johnson D.T., Harris R.A., Blair P.V., Balaban R.S. Functional consequences of mitochondrial proteome heterogeneity. Am. J. Physiol. Cell Physiol., 2007, 292, C698–707.

63. Thiele I., Price N.D., Vo T.D., Palsson B.O. Candidate metabolic network states in human mitochondria. Impact of diabetes, ischemia, and diet. J. Biol. Chem., 2005, 280, pp. 11683–11695.

64. Vo T.D., Greenberg H.J., Palsson B.O. Reconstruction and functional characterization of the human mitochondrial metabolic network based on proteomic and biochemical data. J. Biol. Chem., 2004, 279, pp. 39532–39540.

65. Gabaldon T., Huynen M.A. From endosymbiont to hostcontrolled organelle: the hijacking of mitochondrial protein synthesis and metabolism. PLoS Comput. Biol., 2007, 3:e219.

66. DiMauro S., Hirano M., Schon E.A. Mitochondrial Medicine. New York, Informa Healthcare, 2006. 348 p.

67. Evdokimovskiĭ EV, Patrushev MV, Ushakova TE, Gaziev AI. Sharp changes in the copy number of mtDNA and its transcription in the blood cells of X-ray irradiated mice are observed, and mtDNA fragments appear in the blood serum. Radiats. Biol. Radioecol., 2007, 47 (4), pp. 402–407.

68. Patrushev M.V., Patrusheva V.E., Kasymov V.A., Evdokimovsky E.V., Ushakova T.E., Gaziev A.I. Release of mtDNA from mitochondria and activation of its replication in tissues of irradiated mice. Tsitologiya, 2006, 48 (8), pp. 684–690.

69. Patrushev M., Kasymov V., Patrusheva V., Ushakova T., Gogvadze V., Gaziev A.I. Release of mitochondrial DNA fragments from brain mitochondria of irradiated mice. Mitochondrion, 2006, 6 (1), pp. 57–62.

70. Chinnery P.F. Searching for nuclear-mitochondrial genes. Trends Genet., 2003, 19, 60–62.

71. Bernier F.P., Boneh A., Dennett X., Chow C.W., Cleary M.A., Thorburn D.R. Diagnostic criteria for respiratory chain disorders in adults and children. Neurology, 2002, 59, pp. 1406–1411.

72. Morava E., van den Heuvel L., Hol F., de Vries M.C., Hogeveen M. et al. Mitochondrial disease criteria: diagnostic applications in children. Neurology, 2006, 67, pp. 1823–1826.

73. Walker U.A., Collins S., Byrne E. Respiratory chain encephalomyopathies: a diagnostic classification. Eur. Neurol., 1996, 36, pp. 260–267.

74. Tiranti V., D’Adamo P., Briem E., Ferrari G., Mineri R. et al. Ethylmalonic encephalopathy is caused by mutations in ETHE1, a gene encoding a mitochondrial matrix protein. Am. J. Hum. Genet., 2004, 74, pp. 239–252.

75. Zhu X., Peng X., Guan M.X., Yan Q. Pathogenic mutations of nuclear genes associated with mitochondrial disorders. Acta Biochim. Biophys. Sin. (Shanghai), 2009, 41, pp. 179–187.

76. Mootha V.K, Lepage P., Miller K., Bunkenborg J., Reich M. et al. Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics. Proc. Natl. Acad. Sci. USA, 2003, 100, pp. 605–610.

77. Uusimaa J., Finnila S., Remes A.M., Rantala H., Vainionpaa L. et al. Molecular epidemiology of childhood mitochondrial ncephalomyopathies in a Finnish population: sequence analysis of entire mtDNA of 17 children reveals heteroplasmic mutations in tRNAArg, tRNAGlu, and tRNALeu (UUR) genes. Pediatrics, 2004, 114, pp. 443–450.

78. Patrushev M.V., Patrusheva V.E. Role of transcription factors in mtDNA biogenesis mediated by thyroid hormones. Biochemistry (Mosc), 2011, 76 (2), pp. 260–267.

79. Reversade B., Escande-Beillard N., Dimopoulou A., Fischer B., Chng S.C. et al. Mutations in PYCR1 cause cutis laxa with progeroid features. Nat. Genet., 2009, 41, pp. 1016–1021.

80. Ng S.B. et al. Exome sequencing identifies the cause of a Mendelian disorder. Nat. Genet., 2009, 42, pp. 30–35.

81. Scharfe C., Lu H.H., Neuenburg J.K., Allen E.A., Li G.C. et al. Mapping gene associations in human mitochondria u sing clinical disease phenotypes. PLoS Comput. Biol., 2009, 5:e1000374.

82. Marchenko N.D., Zaika A., Moll U.M. Death signal–induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J. Biol. Chem., 2000, 275, pp. 16202–16212.

83. Mihara M., Erster S., Zaika A., Petrenko O., Chittenden T. et al. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell., 2003, 11, pp. 577–590.

84. Fonseca S.G., Fukuma M., Lipson K.L., Nguyen L.X., Allen J.R. et al. WFS1 is a novel component of the unfolded protein response and maintains homeostasis of the endoplasmic reticulum in pancreatic beta-cells. J. Biol. Chem., 2005, 280, pp. 39609–39615.


Review

For citations:


Kosterina Ye.A., Kozenkov I.I., Kasymov V.A., Kamensky P.A., Dominova I.N., Korolyova Yu.A., Patrusheva V.Ye., Bogachev R.S., Litvinova L.S., Babak S.V., Moiseeva Ye.M., Bogdanov Ye.A., Mukhortova O.A., Vavilina Ya.S., Mikhalchenkova T.A., Patrushev M.V. MITOCHONDRIAL PROTEIN PROFILE AND ITS ROLE IN PATHOLOGIC PROCESSES. Bulletin of Siberian Medicine. 2013;12(3):5-17. (In Russ.) https://doi.org/10.20538/1682-0363-2013-3-5-17

Views: 928


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)