Preview

Bulletin of Siberian Medicine

Advanced search

INVESTIGATION OF NEUROPROTECTIVE ACTIVITY THIOPHANE INVOLUTIONAL CHORIORETINAL DEGENERATION IN RATS OXYS

https://doi.org/10.20538/1682-0363-2013-3-24-32

Abstract

The method of spontaneous and induced luminol -dependent chemiluminescence in homogenates of rat retinas OXYS registered increase in the generation of free radicals against decrease in total antioxidant  activity.  With  the  ultra-microscopic  and  quantitative  analysis  revealed  degenerative retinal neurons rats OXYS: the percentage increase in neurosensory cells with pyknosis of nuclei, hyperchromatic piknomorfnyh associative neurons and ganglion n eurons that have been modified on a light and dark type. Thiophane, limiting free radical reactions in the retina and protects retinal neurons from damage.

About the Authors

A. A. Zhdankina
Siberian State Medical University, Tomsk
Russian Federation
Zhdankina Anna A.


G. A. Kon
Siberian State Medical University, Tomsk
Russian Federation
Kon Galina A.


M. B. Plotnikov
Institute of Pharmacology of SB RAMS, Tomsk
Russian Federation
Plotnikov Mark B.


Ye. Yu. Varakuta
Siberian State Medical University, Tomsk
Russian Federation
Varakuta Yelena Yu.


S. V. Logvinov
Siberian State Medical University, Tomsk
Russian Federation
Logvinov Sergey V.


A. Ye. Prosenko
Institute of Chemistry of antioxidants, Novosibirsk State Pedagogical University, Novosibirsk
Russian Federation
Prosenko Aleksandr Ye.


N. G. Kolosova
Institute of Cytology and Genetics SB RAS, Novosibirsk
Russian Federation
Kolosova Nataliya G.


References

1. Bakhtina I.A., Antip’yeva Ye.V., Prosenko A.Ye. et al. Bulletin of Siberian Branch of the Russian Academy of Medical Sciences, 2000, no. 3–4, pp. 24–29 (in Russian).

2. Dushkin M.I., Prosenko A.Ye., Kandalintseva N.V., Lyakhovich V.V. Scientific Herald of the Tyumen Medical Academy, 2003, no. 1, pp. 11–13 (in Russian).

3. Zenkov N.K., Lankin V.Z., Menshikova Ye.B. Oxidative stress. Biochemical and pathophysiological aspects. Moscow, Science Publ., 2001. 343 p. (in Russian).

4. Libman Ye.S., Shakhova Ye.V. Liquidation of disposable blindness. Global WHO initiative: materials of Rus. interregional Symposium. Ufa, 2003. Pp. 38–42 (in Russian).

5. Blindness and vision impairment. WHO newsletter № 282. 2012. Available at: http://www.who.int/media-centre/factsheets/fs282/ru/index.html (in Russian).

6. Prosenko A.Ye., Klepikova C.Yu., Kandalintseva N.V., Dyubchenko O.I., Dushkin M.I., Zenkov N.K., Menshchikova Ye.B. Bulletin of Siberian Branch of the Russian Academy of Medical Sciences, 2001, no. 1 (99), pp. 114–119 (in Russian).

7. Fursova A.Zh., Gusarevich O.G., Gonchar А.М., Kolosova N.G. Bulletin of Siberian Branch of the Russian Academy of Medical Sciences, 2007, no. 1 (123), pp. 92–96 (in Russian).

8. Battista F., Kalloniatis M., Metha A. Visual function: the problem with eccentricity. Clin. Exp. Optom., 2005, vol. 88, no. 5, pp. 313–321.

9. Binder S., Stanzel V., Krebs I. et al. Transplantation of the RPE in AMD. Prog. Retin. Eye. Res., 2007, no. 5, pp. 516–554.

10. Delcourt C., Cristol J., Leger P. Associations of antioxidant enzymes with cataract and age-related macular degeneration. Ophthalmology, 1999, vol. 106, pp. 215–222.

11. Ebrahimi K.B., Fijalkowski N., Cano M., Handa J.T. Decreased Membrane Complement Regulators in the Retinal Pigmented Epithelium Contributes to Age-Related Macular Degeneration. J. Pathol., 2012. doi: 10.1002/path.4128.

12. Gomez-Cabrera M.C., Sanchis-Gomar F., Garcia-Valles R., Pareja-Galeano H., Gambini J., Borras C., Viña J. Mitochondria as sources and targets of damage in cellular a ging. Clin. Chem. Lab. Med., 2012, vol. 50 (8), pp. 1287–1295.

13. Jarrett S.G., Lin H., Godley B.F., Boulton M.E. Mitochondrial DNA damage and its potential role in retinal degeneration. Prog. Retin. Eye. Res., 2008, vol. 27 (6), pp. 596–607.

14. Markovets A.M., Fursova A.Zh., Kolosova N.G. Therapeutic Action of the Mitochondria-Targeted Antioxidant SkQ1 on Retinopathy in OXYS Rats Linked with Improvement of VEGF and PEDF Gene Expression. PLoSOne, 2011, vol. 6 (7): e21682. Epub 2011 Jul 5.

15. Nakayama M., Aihara M.A., Chen Y.N., Araie M., Tomita Yokotani K. Neuroprotective effects of flavonoids on hypoxia-, glutamate-, and oxidative stress–induced retinal ganglion cell death. Molecular Visio, 2011, vol. 17, pp. 1784–1793.

16. Rastmanesh R. Potential of melatonin to treat or prevent agerelated macular degeneration through stimulation of telomerase activity // Med. Hypotheses, 2011, vol. 76 (1), pp. 79–85.

17. Saprunova V.B., Pilipenko D.I., Alexeevsky A.V., Fursova A.Zh., Kolosova N.G., Bakeeva L.E. Lipofuscin Granule Dynamics during Development of Age-Related Macular Degeneration. Biochemistry (Moscow), 2010, vol. 75, no. 2, рp. 130–138.

18. Valko M., Leibfritz D., Moncol J., Cronin M.T., Mazur M., Telser J. Free radicals and antioxidants in normal physiological functions and human disease // Int J Biochem Cell Biol.– 2007. – Vol. 39(1), P. 44–84.

19. Yu M., Zou W., Peachey N.S., McIntyre T.M., Liu J. A novel role of complement in retinal degeneration. nvest Ophthalmol Vis Sci., 2012, vol. 53 (12), pp. 7684–7692.


Review

For citations:


Zhdankina A.A., Kon G.A., Plotnikov M.B., Varakuta Ye.Yu., Logvinov S.V., Prosenko A.Ye., Kolosova N.G. INVESTIGATION OF NEUROPROTECTIVE ACTIVITY THIOPHANE INVOLUTIONAL CHORIORETINAL DEGENERATION IN RATS OXYS. Bulletin of Siberian Medicine. 2013;12(3):24-32. (In Russ.) https://doi.org/10.20538/1682-0363-2013-3-24-32

Views: 827


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)