The role of free radical oxidation in the kidneys in the nephroprotective action of eplerenone, a mineralocorticoid receptor antagonist, in experimental diabetes mellitus
https://doi.org/10.20538/1682-0363-2021-2-29-35
Abstract
Aim. To study the effect of eplerenone on the activity of free radical oxidation and renal function in rats with experimental diabetes mellitus induced by streptozotocin.
Materials and methods. Experiments were carried out on 36 male Wistar rats. Diabetes mellitus (DM) was simulated by a single intraperitoneal injection of streptozotocin at a dose of 65 mg/kg. Eplerenone was injected into the stomach at a dose of 50 mg/kg.
Results. It was found that eplerenone in experimental diabetic nephropathy (DN) significantly attenuated proteinuria: the concentration of protein in the urine became 4 times lower than in untreated DN (p < 0.001). In the kidneys, eplerenone therapy normalized the structure and function of renal glomeruli and restored the podocyte number, which was reduced by 37.8% in the DN model. Free radical oxidation (FRO) in the kidneys of rats treated with eplerenone increased – the concentration of thiobarbituric acid reactive substances rose by 1.5 times (p = 0.009), and changes in the activity of antioxidant enzymes, such as superoxide dismutase (a decrease by 2.4 times, p = 0.002), catalase (an increase by 1.8 times, р < 0,001), and glutathione peroxidase (an increase by 1.5 times, р < 0.001) were observed, as opposed to the values in the controls.
Conclusion. In streptozotocin-induced experimental diabetic nephropathy in rats, eplerenone had a nephroprotective effect, but increased oxidative stress in the kidneys. The increase in FRO could be determined by the nongenomic effect of aldosterone, which accumulates under conditions of prolonged mineralocorticoid receptor (MR) blockade. The nephroprotective effect of eplerenone can be associated with the weakening of the genomic effects of aldosterone, realized with the participation of MR.
About the Authors
A. Yu. ZharikovRussian Federation
40, Lenina Av., Barnaul, 656038, Russian Federation
4, Timakova Str., Novosibirsk, 630117, Russian Federation
S. O. Filinova
Russian Federation
40, Lenina Av., Barnaul, 656038, Russian Federation
O. N. Mazko
Russian Federation
40, Lenina Av., Barnaul, 656038, Russian Federation
O. G. Makarova
Russian Federation
40, Lenina Av., Barnaul, 656038, Russian Federation
I. P. Bobrov
Russian Federation
40, Lenina Av., Barnaul, 656038, Russian Federation
V. M. Bryukhanov
Russian Federation
40, Lenina Av., Barnaul, 656038, Russian Federation
References
1. Sagoo M.K., Gnudi L. Diabetic nephropathy: Is there a role for oxidative stress? Free Radic. Biol. Med. 2018; 116: 50–63. DOI: 10.1016/j.freeradbiomed.2017.12.040.
2. Bhatti A.B., Usman M. Drug targets for oxidative podocyte injury in diabetic nephropathy. Cureus. 2015; 7 (12): e393. DOI: 10.7759/cureus.393.
3. Sharma K. Mitochondrial dysfunction in the diabetic kidney. Adv. Exp. Med. Biol. 2017; 982: 553–562. DOI: 10.1007/978-3-319-55330-6_28.
4. Ahn J.H., Hong H.C., Cho M.J., Kim Y.J., Choi H.Y., Eun C.R., Yang S.J., Yoo H.J., Kim H.Y., Seo J.A., Kim S.G., Choi K.M., Baik S.H., Choi D.S., Kim N.H. Effect of eplerenone, a selective aldosterone blocker, on the development of diabetic nephropathy in type 2 diabetic rats. Diabetes Metab. J. 2012; 36 (2): 128–135. DOI: 10.4093/dmj.2012.36.2.128.
5. Спасов А.А., Воронкова М.П., Снигур Г.Л., Чепляева Н.И., Чепурнова М.В. Экспериментальная модель сахарного диабета типа 2. Биомедицина. 2011; (3): 12–18.
6. Филинова С.О., Жариков А.Ю., Бобров И.П., Мазко О.Н., Макарова О.Г. Патоморфологическая картина диабетической нефропатии при экспериментальном сахарном диабете. Казанский медицинский журнал. 2019; 100 (1): 147–152. DOI: 10.17816/KMJ2019-147.
7. Брюханов В.М., Зверев Я.Ф., Лампатов В.В. Жариков А.Ю., Талалаева О.С. Методы доклинического (экспериментального) исследования влияния лекарственных средств на функцию почек. Новосибирск: Гео, 2013: 84.
8. Хафизьянова Р.Х., Бурыкин И.М., Алеева Г.Н. Математическая статистика в экспериментальной и клинической фармакологии. Казань: Медицина, 2006: 374.
9. Филинова С.О., Жариков А.Ю., Мазко О.Н., Макарова О.Г., Баландович Б.А. Показатели прооксидантного и антиоксидантного статусов в почках крыс при экспериментальном сахарном диабете. Патологическая физиология и экспериментальная терапия. 2020; 64 (1): 124–127. DOI: 10.25557/0031-2991.2020.01.124-127.
10. Gupta G., Dahiya R., Singh Y., Mishra A., Verma A., Gothwal S.K., Aljabali A., Dureja H., Prasher P., Negi P., Kapoor D.N., Goyal R., Tambuwala M.M., Chellappan D.K., Dua K. Monotherapy of RAAS blockers and mobilization of aldosterone: A mechanistic perspective study in kidney disease. Chemico-Biological Interactions. 2020; 317: 108975. DOI: 10.1016/j.cbi.2020.108975.
11. Mihailidou A.S., Tzakos A.G., Ashton A.W. Non-genomic effects of aldosterone. Vitam. Horm. 2019; 109: 133–149. DOI: 10.1016/bs.vh.2018.12.001.
12. Eiam-Ong S., Chaipipat M., Manotham K., Eiam-Ong S. Aldosterone rapidly activates p-PKC delta and GPR30 but suppresses p-PKC epsilon protein levels in rat kidney. Endocr. Regul. 2019; 53 (3): 154–164. DOI: 10.2478/enr-2019-0016.
13. Podgórski P., Konieczny A., Lis Ł., Witkiewicz W., Hruby Z. Glomerular podocytes in diabetic renal disease. Adv. Clin. Exp. Med. 2019; 28 (12): 1711–1715. DOI: 10.17219/acem/104534.
14. Bai M., Chen Y., Zhao M., Zhang Y., He J.C., Huang S., Jia Z., Zhang A. NLRP3 inflammasome activation contributes to aldosterone-induced podocyte injury. Am. J. Physiol. Renal. Physiol. 2017; 312 (4): F556–F564. DOI: 10.1152/ajprenal.00332.2016.
Review
For citations:
Zharikov A.Yu., Filinova S.O., Mazko O.N., Makarova O.G., Bobrov I.P., Bryukhanov V.M. The role of free radical oxidation in the kidneys in the nephroprotective action of eplerenone, a mineralocorticoid receptor antagonist, in experimental diabetes mellitus. Bulletin of Siberian Medicine. 2021;20(2):29-35. https://doi.org/10.20538/1682-0363-2021-2-29-35