Preview

Bulletin of Siberian Medicine

Advanced search

Role of the ubiquitin-proteasome system in the progression of oral squamous cell carcinoma

https://doi.org/10.20538/1682-0363-2021-2-160-167

Abstract

 The ubiquitin-proteasome system (UPS) controls the activity, subcellular localization, and stability of many cellular proteins that affect cellular homeostasis by regulating multiple signaling cascades. The activity of this system is associated with the emergence and progression of oral squamous cell carcinoma, since specific proteolysis of most intracellular proteins involved in the pathogenesis of cancer is implemented by this system.
The review article presents data on the characteristics of proteasomes and the process of substrate protein ubiquitination. The role of the ubiquitin-proteasome system in the pathogenesis of oral squamous cell carcinoma is shown, and the prospects of its use in precancerous diseases are described. The  literature search was carried out in the search engines Medline, eLIBRARY, Scopus, The Cochrane Library, and RSCI.
 

About the Authors

D. E. Mikhalev
Siberian State Medical University (SSMU)
Russian Federation

2, Moscow Trakt, Tomsk, 634050, Russian Federation



O. D. Baydik
Siberian State Medical University (SSMU)
Russian Federation

2, Moscow Trakt, Tomsk, 634050, Russian Federation



I. V. Kondakova
Cancer Research Institute, Tomsk National Research Medical Center (TNRМС) of the Russian Academy of Science
Russian Federation

5, Kooperativny Str., Tomsk, 634050, Russian Federation



E. A. Sidenko
Cancer Research Institute, Tomsk National Research Medical Center (TNRМС) of the Russian Academy of Science
Russian Federation

5, Kooperativny Str., Tomsk, 634050, Russian Federation



M. R. Mukhamedov
Cancer Research Institute, Tomsk National Research Medical Center (TNRМС) of the Russian Academy of Science
Russian Federation

5, Kooperativny Str., Tomsk, 634050, Russian Federation



P. G. Sysolyatin
Novosibirsk State Medical University (NSMU)
Russian Federation

52, Krasny Av., Novosibirsk, 630091, Russian Federation



References

1. Чойнзонов Е.Л., Спирина Л.В., Кондакова И. В., Чижевская С.Ю., Шишкин Д.А., Кульбакин Д.Е. Прогностическая значимость определения активности протеасом в тканях плоскоклеточных карцином головы и шеи. Бюллетень СО РАМН. 2014; 34 (4): 103–108.

2. Какурина Г.В., Кондакова И.В., Чойнзонов Е.Л. Прогнозирование метастазирования плоскоклеточных карцином головы и шеи. Вопросы онкологии. 2012; 58 (1): 26–32.

3. Voutsadakis I.A. Ubiquitination and the ubiquitin – proteasome system in the pathogenesis and treatment of squamous head and neck carcinoma. Anticancer Research. 2013; 33 (9): 3527–3542.

4. Lub S., Maes K., Menu E., Bruyne E., Vanderkerken K., Valckenborgh. E. Novel strategies to target the ubiquitin proteasome system in multiple myeloma. Oncotarget. 2016; 7 (6): 6521–6537. DOI: 10.18632/oncotarget.6658.

5. Harshbarger W., Miller C., Diedrich C., Sacchettini J. Crystal structure of the human 20S proteasome in complex with carfilzomib. Structure. 2015; 23 (2): 418–424. DOI: 10.1016/j.str.2014.11.017.

6. Сорокин А.В., Ким Е.Р., Овчинников Л.П. Протеасомная система деградации и процессинга белков. Успехи биологической химии. 2009; 49: 3–76.

7. Sijts E.J., Kloetzel P.M. The role of the proteasome in the generation of MHC class I ligands and immune responses. Cellular and Molecular Life Sciences. 2011; 68 (9): 1491–1502. DOI: 10.1007/s00018-011-0657-y.

8. Guimaraes G., Gomes M., Campos P.C., Marinho F.V., de Assis N., Silveira T.N., Oliveira S.C. Immunoproteasome

9. subunits are required for CD8+ T cell function and host resistance to brucella abortus infection in mice. Infection and Immunity. 2018; 86 (3): e00615–00617. DOI: 10.1128/IAI.00615-17.

10. Mao I., Liu J., Li X., Luo H. REGγ, a proteasome activator and beyond? Cellular and Molecular Life Sciences. 2008; 65 (24): 3971–3980. DOI: 10.1007/s00018-008-8291-z.

11. Savulescu A.F., Glickman M.H. Proteasome activator 200: the heat is on. Molecular and Cellular Proteomics. 2011; 10 (5): R110.006890. DOI: 10.1074/mcp.R110.006890.

12. Liu C.W., Jacobson A.D. Functions of the 19S complex in proteasomal degradation. Trends in Biochemical Sciences. 2013; 38 (2): 103–110. DOI: 10.1016/j.tibs.2012.11.009.

13. Cascio P. PA28αβ: the enigmatic magic ring of the proteasome? Biomolecules. 2014; 4 (2): 566–584. DOI: 10.3390/biom4020566.

14. Sharova N., Zakharova L. Multiple forms of proteasomes and their role in tumor fate. Recent Patents on Endocrine, Metabolic Immune Drug Discovery. 2008; 2: 152–161. DOI: 10.2174/187221408786241847.

15. Tanaka K. The proteasome: overview of structure and function. The Proceedings of the Japan Academy, Series B. 2009; 85: 12–36. DOI: 10.2183/pjab.85.12.

16. Шарова Н.П., Астахова Т.М., Карпова Я.Д., Абатурова С.Б., Люпина Ю.В., Богомякова Ю.В., Абрамова Е.Б., Ерохов П.А. Множественные формы протеасом как объекты для разработки новых противоопухолевых лекарств. Онкохирургия. 2011; 3 (2): 37–42.

17. Schliessmann S.S., Cicko S., Thomassen J., Anlasik T., Müller T., Idzko M., Zissel G., Sixt S.U. Acute smoke exposure decreases bronchial extracellular proteasome concentration. The European Respiratory Journal. 2011; 38: 737.

18. Зайкова Ю.Я., Куличкова В.А., Ермолаева Ю.Б., Боттрилл А., Барлев Н.А., Цимоха А.С. Характеристика внеклеточных протеасом и ассоциированных с ними белков методом iTRAQ-масс-спектрометрии. Цитология. 2013; 55 (2): 111–122.

19. Sixt S.U., Beiderlinden M., Jennissen H.P., Peters J. Extracellularproteasome in the human alveolar space: a new housekeeping enzyme? American Journal of Physiology-Lung Cellular and Molecular Physiology. 2007; 292 (2): 1280–1288. DOI: 10.1152/ajplung.00140.2006.

20. Bochmann I., Ebstein F., Lehmann A., Wohlschlaeger J., Sixt S.U., Kloetzel P.M., Dahlmann B. T lymphocytes export proteasomes by way of microparticles: a possible mechanism for generation of extracellular proteasomes. Journal of Cellular and Molecular Medicine. 2014; 18 (1): 59–68. DOI: 10.1111/jcmm.12160.

21. Зайкова Ю.Я., Куличкова В.А., Ермолаева Ю.Б., Гаузе Л.Н., Цимоха А.С. Сравнительный анализ вне- и внутриклеточных протеасом клеток человека линии К562. Цитология. 2011; 53 (6): 459–465.

22. Van Zijl F., Krupitza G., Mikulits W. Initial steps of metastasis: cell invasion and endothelial transmigration. Mutation Research. 2011; 728 (1-2): 23–34. DOI: 10.1016/J.MRREV.2011.05.002.

23. Tang K., Liu J., Yang Z., Zhang B., Zhang H., Huang C., Ma J., Shen G.X., Ye D., Huang B. Microparticles mediate enzyme transfer from platelets to mast cells: a new pathway for lipoxin A4 biosynthesis. Biochemical and Biophysical Research Communications. 2010; 400 (3): 432–436. DOI: 10.1016/j.bbrc.2010.08.095.

24. Yuan A., Farber E.L., Rapoport A.L., Tejada D., Deniskin R., Akhmedov N.B., Farber D.B. Transfer of microRNAs by embryonic stem cell microvesicles. PLoS One. 2009; 4 (3): 4722. DOI: 10.1371/journal.pone.0004722.

25. Юнусова Н.В., Кондакова И.В., Коломиец Л.А., Молчанов С.В. Протеасомы и экзосомы при раке яичников: связь с особенностями клинического течения и прогнозом. Сибирский онкологический журнал. 2014; (4): 53–59.

26. Штамм Т.А., Нарыжный С.Н., Ланда С.Б., Бурдаков В.С., Артамонова Т.О., Филатов М.В. Получение и анализ экзосом, секретируемых злокачественно трансформированными клетками человека в системах in vitro. Цитология. 2012; 54 (5): 430–438.

27. Keller S., Konig A.-K., Marme F., Runz S., Wolterink S., Koensgen D., Mustea A., Sehouli J., Altevogt P. Systemic presence and tumor-growth promoting effect of ovarian carcinoma released exosomes. Cancer Letters. 2009; 278 (1): 73–81. DOI: 10.1016/j.canlet.2008.12.028.

28. Rupp A.-K., Rupp C., Keller S., Brase J.C., Ehehalt R., Fogel M., Moldenhauer G., Marmé F., Sültmann H., Altevogt P. Loss of EpCAM expression in breast cancer derived serum exosomes: role of proteolytic cleavage. Gynecologic Oncology. 2011; 122 (2): 437–446. DOI: 10.1016/j.ygyno.2011.04.035.

29. Tu Y., Chen C., Pan J., Xu J., Zhou Z.-G., Wang C.-Y. The ubiquitin proteasome pathway (UPP) in the regulation of cell cycle control and DNA damage repair and its implication in tumorigenesis. International Journal of Clinical and Experimental Pathology. 2012; 5 (8): 726–738.

30. Bassermann F., Eichner R., Pagano M. The ubiquitin proteasome system – implications for cell cycle control and the targeted treatment of cancer. Biochimica et Biophysica Acta. 2014; 1843 (1): 150–162. DOI: 10.1016/j.bbamcr.2013.02.028.

31. Borg N.A., Vishva M.D. Ubiquitin in cell-cycle regulation and dysregulation in cancer. Annual Review of Cancer

32. Biology. 2017; 1: 59–77. DOI: 10.1146/annurev-cancerbio-040716-075607.

33. Skaar J.R., Pagano M. Control of cell growth by the SCF and APC/C ubiquitin ligases. Current Opinion in Cell Biology. 2009; 21 (6): 816–824. DOI: 10.1016/j.ceb.2009.08.004.

34. Alao J.P. The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention. Molecular Cancer. 2007; 6: 24. DOI: 10.1186/1476-4598-6-24.

35. Huang Q., Figueiredo-Pereira M.E. Ubiquitin/proteasome pathway impairment in neurodegeneration: therapeutic implications. Apoptosis: an International Journal on Programmed Cell Death. 2010; 15 (11): 1292–1311. DOI: 10.1007/s10495-010-0466-z.

36. Thibaudeau T.A., Smith D.M. A practical review of proteasome pharmacology. Pharmacological Reviews. 2019; 71 (2): 170–197. DOI: 10.1124/pr.117.015370.

37. Spirina L.V., Kondakova I.V., Choynzonov E.L., Chigevskaya S.Y., Shishkin D.A., Kulbakin D.Y. Expression of vascular endothelial growth factor and transcription factors HIF-1, NFkB expression in squamous cell carcinoma of head and neck; Association with proteasome and calpain activities. Journal of Cancer Research and Clinical Oncology 2013; 139 (4): 625–633. DOI: 10.1007/s00432-012-1366-0.

38. Spirina L.V., Yunusova N.V., Kondakova I.V., Kolomiets L.A., Koval V.D., Chernyshova A.L., Shpileva O.V. Association of growth factors, HIF1 and NF-κB expression with proteasomes in endometrial cancer. Molecular Biology Reports. 2012; 39 (9): 8655–8662. DOI: 10.1007/ s11033-012-1720-y.

39. Rahimi N. The ubiquitin-proteasome system meets angiogenesis. Molecular Cancer Therapeutics. 2012; 11 (3): 538–548. DOI: 10.1158/1535-7163.MCT-11-0555.

40. Glasgow E., Mishra L. Transforming growth factor-beta signaling and ubiquitinators in cancer. Endocrine-Related Cancer. 2008; 15 (1): 59–72. DOI: 10.1677/ERC-07-0168.

41. Цимоха А.С. Протеасомы: участие в клеточных процессах. Цитология. 2010; 52 (4): 277–300.

42. Jang H.H. Regulation of protein degradation by proteasomes in cancer. Journal of Cancer Prevention. 2018; 23 (4): 153–161. DOI: 10.15430/JCP.2018.23.4.153.

43. Villa A., Celentano A., Glurich I., Borgnakke W.S., Jensen S.B., Peterson D.E., Delli K., Ojeda D. Vissink A., Farah C.S. World workshop on oral medicine vii: prognostic biomarkers in oral leukoplakia: a systematic review of longitudinal studies. Oral Diseases. 2019; 25 (Suppl. 1): 64–78. DOI: 10.1111/odi.13087.

44. Li J., Feng X., Sun C., Zeng X., Xie L., Xu H., Li T., Wang R., Xu X., Zhou X., Zhou M., Zhou Y., Dan H., Wang Z., Ji N., Deng P., Liao G., Geng N., Wang Y., Zhang D., Lin Y., Ye L., Liang X, Li L., Luo G., Jiang L., Wang Z., Chena Q. Associations between proteasomal activator PA28γ and outcome of oral squamous cell carcinoma: Evidence from cohort studies and functional analyses. EBioMedicine. 2015; 2 (8): 851–858. DOI: 10.1016/j.ebiom.2015.07.004.

45. Wang Z., Feng X., Liu X., Jiang L., Zeng X., Ji N., Li J., Li L., Chen Q. Involvement of potential pathways in malignant transformation from oral leukoplakia to oral squamous cell carcinoma revealed by proteomic analysis. BMC Genomics. 2009; 10: 383. DOI: 10.1186/1471-2164-10-383.

46. Wang X., Tu S., Tan J., Tian T., Ran L., Rodier J.F., Ren G. REG gamma: a potential marker in breast cancer and effect on cell cycle and proliferation of breast cancer cell. Medical Oncology. 2011; 28 (1): 31–41. DOI: 10.1007/s12032-010-9546-8.

47. Chai F., Liang Y., Bi J., Chen L., Zhang F., Cui Y., Bian X., Jiang J. High expression of REGgamma is associated with metastasis and poor prognosis of patients with breast cancer. International Journal of Clinical and Experimental Pathology. 2014; 7 (1): 7834–7843.

48. Arlt A., Bauer I., Schafmayer C., Tepel J., Sebens Muerkoster S., Brosch M., Roder C., Kalthoff H., Hampe J., Moyer M.P., Folsch U.R., Schäfer H. Increased proteasome subunit protein expression and proteasome activity in colon cancer relate to an enhanced activation of nuclear factor E2-related factor 2 (Nrf2). Oncogene. 2009; 28 (45): 3983–3996. DOI: 10.1038/onc.2009.264.

49. Kondo M., Moriishi K., Wada H., Noda T., Marubashi S., Wakasa K., Matsuura Y., Doki Y., Mori M., Nagano H. Upregulation of nuclear PA28gamma expression in cirrhosis and hepatocellular carcinoma. Experimental and Therapeutic Medicine. 2012; 3 (3): 379–385. DOI: 10.3892/etm.2011.415.

50. Kontos C.K. Surrogate prognostic biomarkers in OSCC: The paradigm of PA28gamma overexpression. EBioMedicine. 2015; 2 (8): 784–785. DOI: 10.1016/j.ebiom.2015.07.032.

51. Xiaodong F., Yuchen J., Liang X., Lu J., Jing L., Chongkui S., Hao X., Ruinan W., Min Z., Yu Z., Dan H., Zhiyong W., Ning J., Peng D., Ga L., Ning G., Yun W., Dunfang Z., Yunfeng L., Qianming C. Overexpression of proteasomal activator PA28α serves as a prognostic factor in oral squamous cell carcinoma. Journal of Experimental and Clinical Cancer Research. 2016; 35: 35. DOI: 10.1186/s13046-016-0309-z.


Review

For citations:


Mikhalev D.E., Baydik O.D., Kondakova I.V., Sidenko E.A., Mukhamedov M.R., Sysolyatin P.G. Role of the ubiquitin-proteasome system in the progression of oral squamous cell carcinoma. Bulletin of Siberian Medicine. 2021;20(2):160-167. https://doi.org/10.20538/1682-0363-2021-2-160-167

Views: 1023


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)