Preview

Bulletin of Siberian Medicine

Advanced search

Features of apoptosis and blebbing of the lymphocyte plasma membrane in bronchial asthma

https://doi.org/10.20538/1682-0363-2021-2-176-183

Abstract

 Given a persistent global trend towards an increase in the number of patients with bronchial asthma (BA) over the past decades, researchers are facing challenges related to a comprehensive study of the pathogenesis of BA. Numerous studies have shown that BA is associated with long-term persistence of leukocytes (lymphocytes, macrophages, and eosinophils) in the bronchial tissues. However, the causes of this phenomenon remain understudied. The article provides an overview of modern research on the mechanisms of disorders of lymphocyte apoptosis in patients with BA.

Our study considers the main mechanisms of molecular regulation of  lymphocyte apoptosis, including transcription factors, the Fas/FasL system, and bcl-2/bcl-XL factors. We present the data on the role of reduced lymphocyte apoptosis in the formation of a severe BA phenotype. Taking into account high  prevalence of obesity among patients with BA, we analyzed a few existing articles on the apoptosis of immunocompetent cells in obesity. In addition, the article highlights the key mechanisms of development of lymphocyte plasma membrane blebbing (PMB) with formation of microvesicles, as well as their influence on the course of pathological processes in BA.

The authors believe that further in-depth study of apoptosis, lymphocyte  necrosis, and plasma membrane blebbing can help improve the principles of diagnosis and treatment of BA. 

About the Authors

I. A. Solovieva
Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Clinical Regional Hospital
Russian Federation

1, Partizana Zeleznyaka Str., Krasnoyarsk, 660022, Russian Federation

3а, Partizana Zeleznyaka Str., Krasnoyarsk, 660022, Russian Federation



I. V. Demko
Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Clinical Regional Hospital
Russian Federation

1, Partizana Zeleznyaka Str., Krasnoyarsk, 660022, Russian Federation

3а, Partizana Zeleznyaka Str., Krasnoyarsk, 660022, Russian Federation



E. A. Sobko
Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Clinical Regional Hospital
Russian Federation

1, Partizana Zeleznyaka Str., Krasnoyarsk, 660022, Russian Federation

3а, Partizana Zeleznyaka Str., Krasnoyarsk, 660022, Russian Federation



A. Yu. Kraposhina
Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Clinical Regional Hospital
Russian Federation

1, Partizana Zeleznyaka Str., Krasnoyarsk, 660022, Russian Federation

3а, Partizana Zeleznyaka Str., Krasnoyarsk, 660022, Russian Federation



N. V. Gordeeva
Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Clinical Regional Hospital
Russian Federation

1, Partizana Zeleznyaka Str., Krasnoyarsk, 660022, Russian Federation

3а, Partizana Zeleznyaka Str., Krasnoyarsk, 660022, Russian Federation



D. A. Anikin
Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

1, Partizana Zeleznyaka Str., Krasnoyarsk, 660022, Russian Federation



D. A. Anikina
Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

1, Partizana Zeleznyaka Str., Krasnoyarsk, 660022, Russian Federation



References

1. Global Strategy for asthma management and prevention. Global Initiative for Asthma. GINA. URL: http://www.slideshare.net/cristobalbunuel/gina-report-2016; 2016. URL: http://www.ginasthma.org/local/uploads/files/GINA.Report_ 2016.pdf.

2. Федеральные клинические рекомендации по бронхиальной астме. 2016: 64. URL: http://spulmo.ru/obshchestvonews/news-812.

3. Reddel H.K., Hurd S.S., FitzGerald J.M. World Asthma Day. GINA 2014: A global asthma strategy for a global problem. Int. J. Tuberc. Lung Dis. 2014; 18 (5): 505–506. DOI: 10.5588/ijtld.14.0246.

4. Бельтюков Е.К., Братухин К.П. Эпидемиология аллергического ринита и бронхиальной астмы в Свердловской области. Доктор.ру. 2015; 108 (7): 11– 14.

5. Ушакова Д.В., Никонов Е.Л. Эпидемиология бронхиальной астмы. Терапия. 2018; 20 (2): 90–95.

6. Федосеев Г.Б., Емельянов А.В., Сергеева Г.Р., Иванова Н.И., Зибрина Т.М., Максименко И.Н., Цуканова И.В. Распространенность бронхиальной астмы и аллергического ринита среди взрослого населения Санкт-Петербурга. Терапевтический архив. 2003; 75 (1): 523–526.

7. Guzzardi M.A, Iozzo P., Salonen M.K., Kajantie E., Eriksson J.G. Maternal adiposity and infancy growth predict later telomere length: a longitudinal cohort study. Int. J. Obes. 2016; 40 (7): 1063–1069. DOI: 10.1038/ijo.2016.58.

8. Минеев В.Н., Лалаева Т.М., Васильева Т.С., Трофимов В.И. Фенотип бронхиальной астмы с ожирением. Пульмонология. 2012; (2): 102–107. DOI: 10.18093/0869-0189-2012-0-2-102-107.

9. Baffi C.W., Winnica D.E., Holguin F. Asthma and obesity: mechanisms and clinical implications. Asthma Res. Pract. 2015; 1: 1. DOI: 10.1186/s40733-015-0001-7.

10. Глушкова Е.Ф., Шартанова Н.В., Лусс Л.В. Ожирение и бронхиальная астма: клинико-аллергологическая характеристика. Русский Медицинский Журнал. 2018; 8 (1): 4–8.

11. Vodounon C.A., Chabi C.B., Skibo Yu.V., Ezin V., Aikou N., Kotchoni S.O., Akpona S.A., Baba-Moussa L., Abramova Z.I. Influence of the programmed cell death of lymphocytes on the immunity of patients with atopic bronchial asthma. Allergy Asthma Clin. Immunol. 2014; 10 (1): 14. DOI: 10.1186/1710-1492-10-14.

12. Shore S.A. Obesity and asthma: possible echanisms. J. Allergy Clin. Immunol. 2008; 121 (5): 1087–1093. DOI: 10.1016/j.jaci.2008.03.004.

13. Miranda C., Busacker A., Balzar S., Trudeau J., Wenzel S.E. Distinguishing severe asthma phenotype: role of age at onset and eosinophilic inflammation. J. Allergy Clin. Immunol. 2004; 113 (1): 101–108. DOI: 10.1016/j.jaci.2003.10.041.

14. Wiik A.S., Gordon T.P., Kavanaugh A.F., Lahita R.G., Reeves W., van Venrooij W.J., Wilson M.R., Fritzler M. Cutting edge diagnostics in rheumatology: the role of patients, clinicians, and laboratory scientists in optimizing the use of autoimmune serology. Arthritis Rheum. 2004; 51 (2): 291–298. DOI: 10.1002/art.20229.

15. Jameson S.C. Maintaining the norm: T-cell homeostasis. Nat. Rev. Immunol. 2002; 8 (2): 547–556. DOI: 10.1038/nri853.

16. Plas D.R., Rathmell J.C., Thompson C.B. Homeostatic control of lymphocyte survival: potential origins and implications. Nat. Immunol. 2002; 3 (6): 515–521. DOI: 10.1038/ni0602-515.

17. Badovinac V.P., Harty J.T. Programming, demarcating, and manipulating CD8+ T-cell memory. Immunol. Rev. 2006; 211 (1): 67–80. DOI: 10.1111/j.0105-2896.2006.00384.x.

18. Скибо Ю.В., Пономарева А.А., Решетникова И.Д., Абрамова З.И. Индукция аутофагии в Т-лимфоцитах периферической крови больных атопической бронхиальной астмой. Клеточная трансплантология и тканевая инженерия. 2012; 7 (3): 146–150.

19. Green D.R. The end and after: how dying cells impact the living organism. Immunity. 2011; 35 (4): 441–445. DOI: 10.1016/j.immuni.2011.10.003.

20. Черников В.П., Белоусова Т.А., Кактурский Л.В. Морфологические и биохимические критерии клеточные гибели. Архив патологии. 2010; 72 (3): 48–54.

21. Romao S., Gannage M., Munz C. Checking the garbage bin for problems in the house, or how autophagy assists in antigen presentation to the immune system. Semin. Cancer Biol. 2013; 23 (5): 391–396. DOI: 10.1016/j.semcancer.2013.03.001.

22. Walsh C.M., Edinger A.L. The complex interplay between autophagy, apoptosis and necrotic signals promotes T-cell homeostasis. Immunol. Rev. 2010; 236 (1): 95–109. DOI: 10.1111/j.1600-065X.2010.00919.x.

23. Варга О.Ю., Рябков В.А. Апоптоз: понятие, механизмы реализации, значение. Экология человека. 2006; (7): 28–32.

24. Zhao Y.X., Zhang H.R., Yang X.N., Zhang Y.H., Feng S., Yu F.X., Yan X.X. Fine particulate matter-induced exacerbation of allergic asthma via activation of T-cell immunoglobulin and mucin domain 1. Chinese Medical Journal 2018; 131 (20): 2461–2473. DOI: 10.4103/0366-6999.243551.

25. Чечина О.Е., Биктасова А.К., Сазонова Е.В. Роль цитокинов в редокс-зависимой регуляции апоптоза. Бюллетень сибирской медицины. 2009; 8 (2): 67–71. DOI: 10.20538/1682-0363-2009-2-67-71.

26. Tian B.P., Xia L.X., Bao Z.Q., Zhang H., Xu Z.W., Mao Y.Y. Bcl-2 inhibitors reduce steroid-insensitive airway inflammation. J. Allergy Clin Immunol. 2017; 140 (2): 418–430. DOI: 10.1016/j.jaci.2016.11.027.

27. Лунев Д.А., Заклякова Л.В., Овсянникова Е.Г., Сарсенгалиева А.К. Роль апоптоза в поддержании гомеостаза живых систем. Астраханский медицинский журнал. 2010; 5 (1): 11–20.

28. Brison D.R. Apoptosis in mammalian preimplantation embryos: regulation by survival factors. Pathol. Int. 2001; 51 (12): 948–953.

29. Hengartner M.O. The biochemistry of apoptosis. Nature. 2000; 407 (6805): 770–776. DOI: 10.1038/35037710.

30. Marsden V.S., O’connor L., O’reilly R.A.. Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature. 2002; 419 (6907): 614–617. DOI: 10.1038/nature01101.

31. Kroemer G., Martin S.J. Caspase-independent cell death. Nat. Med. 2005; 11 (7): 725–730. DOI: 10.1038/nm1263.

32. Milner T.A., Waters E.M., Robinson D.C., Pierce J.P. Degenerating processes identified by electron microscopic immunocytochemial methods. Meth. Mol. Biol. 2011; 793: 23–59. DOI: 10.1007/978-1-61779-328-8_3.

33. Whelan R.S., Kaplinskiy V., Kitsis R.N. Cell death in the pathogenesis of heart disease: mechanisms and signifi cance. Annu. Rev. Physiol. 2010; 72 (1): 19–44. DOI: 10.1146/annurev.physiol.010908.163111.

34. Yang F., Tu J., Pan J.Q., Luo H.L., Liu Y.H., Wan J., Zhang J., Wei P.F., Jiang T., Chen Y.H., Wang L.P. Light-controlled inhibition of malignant glioma by opsin gene transfer. Cell Death Dis. 2013; 4(10): 893–907. DOI: 10.1038/cddis.2013.425.

35. Zeng W., Wang X., Xu P., Liu G., Eden H.S., Chen X. Molecular imaging of apoptosis: from micro to macro. Theranostics. 2015; 5 (6): 559–582. DOI: 10.7150/thno.11548.

36. Сергеева Т.Ф., Ширманова М.В., Загайнова Е.В., Лукьянов К.А. Современные методы исследования апоптотической гибели клеток. Современные технологии в медицине. 2015; 7 (3): 172–182. DOI: 10.17691/stm2015.7.3.21.

37. Todo-Bom A., Mota P.A., Alves V., Vale P.S., Santos R.M. Apoptosis and Asthma in the Elderly. J. Investig Allergol. Clin. Immunol. 2007; 17 (2): 107–112.

38. Deponte M. Programmed cell death in protists. Biochem Biophys Acta. 2008; 1783 (7): 1396–1405. DOI: 10.1016/j.bbamcr.2008.01.018.

39. Potapinska O., Demkow U. T-lymphocyte apoptosis in asthma. Eur. J. Med. Res. 2009: 14 (4): 192–195. DOI:

40. 1186/2047-783X-14-S4-192.

41. Rottem M., Shoenfeld Y. Asthma as a paradigm for autoimmune desease. Int. Arch. Allergy. Immunol. 2003; 132 (3): 210–214. DOI: 10.1159/000074301.

42. Яровая Г.А., Нешкова Е.А., Мартынова Е.А., Блохина Т.Б. Роль протеолитических ферментов в контроле различных стадий апоптоза. Лабораторная медицина. 2011; (11): 39–53.

43. Огородова Л.М., Деев И.А., Иванчук И.И. Клиническая и патогенетическая эффективность различных фармакотерапевтических режимов при тяжелой бронхиальной астме у детей. Педиатрическая фармакология. 2006; 3 (3): 26–31.

44. Murray P.J. The JAK-STAT signaling pathway: input and output integration. J. Immunol. 2007; 178 (5): 2623– 2629. DOI: 10.4049/jimmunol.178.5.2623.

45. Минеев В.Н., Сорокина Л.Н., Нёма М.А., Иванов В.А., Липкин Г.И. Роль транскрипционного фактора РАХ-5 в патогенезе бронхиальной астмы. Медицинская иммунология. 2012; 14 (4–5): 347–352.

46. Bittner S. Ehrenschwender M. Multifaceted death receptor 3 signaling-promoting survival and triggering death. FEBS Letters. 2017; 591 (17): 2543–2555. DOI: 10.1002/1873-3468.12747.

47. Chen G.G., Liang N.C., Lee J.F., Chan U.P., Wang S.H., Leung B.C., Leung K.L. Over-expression of Bcl-2 against Pteris semipinnata L-induced apoptosis of human colon cancer cells via a NF-kappa B-related pathway. Apoptosis. 2004; 9 (5): 619–627. DOI: 10.1023/b:appt.0000038041.57782.84.

48. Viatour P., Bentires-Alj M., Chariot A., Deregowski V., de Leval L., Merville M.P., Bours V. NF-kappa B2/p100 induces Bcl-2 expression. Leukemia. 2003; 17 (7): 1349–1358. DOI: 10.1038/sj.leu.2402982.

49. Abdulamir A.S., Kadhim H.S., Hafi R.R., Ali M.A., Faik I., Abubakar F., Abbas K.A. Severity of asthma: the role of

50. CD25+, CD30+, NF-kappaB, and apoptotic markers. J. Investig. Allergol. Clin. Immunol. 2009; 19 (3): 218–224.

51. Ying S., Khan L.N., Meng Q., Barnes N.C., Kay A.B. Cyclosporin A, apoptosis of BAL T-cells and expression of Bcl-2 in asthmatics. Eur. Respir. J. 2003; 22 (2): 207–212. DOI: 10.1183/09031936.03.00098902.

52. Akha A.S., Miller R.A. Signal transduction in the aging immune system. Curr. Opin. Immunol. 2005; 17 (5): 486– 491. DOI: 10.1016/j.coi.2005.07.004.

53. Melis M., Siena L., Pace E., Gjomarkaj M., Profi ta M., Pirazzoli A., Todaro M., Stassi G., Bonsignore G., Vignola A.M. Fluticasone induces apoptosis in peripheral T- lymphocytes: a comparison between asthmatic and normal subjects. Eur. Respir. J. 2002; 19 (2): 257–266. DOI: 10.1183/09031936.02.00239202.

54. Buc M., Dzurilla M., Bucova M. Immunophathogenesis of bronchial asthma. Arch. Immunol. Ther. Ex. 2009; 57 (5): 331–434. DOI: 10.1007/s00005-009-0039-4.

55. Чубарова С.В., Чернова И.А., Крапошина А.Ю., Соловьева И.А., Демко И.В., Салмина А.Б., Малиновская Н.А. Апоптоз лимфоцитов периферической крови при бронхиальной астме различной степени тяжести. Бюллетень физиологии и патологии дыхания. 2013; (48): 28–33.

56. Vodounon C.A., Chabi C.B., Skibo Y.V., Ezin V., Aikou N., Kotchoni S.O., Akpona S.A., Baba-Moussa L., Abramova Z.I. Influence of the programmed cell death of lymphocytes on the immunity of patients with atopic bronchial asthma. Allergy, Asthma and Clinical Immunology. 2014; 10 (1): 1–11. DOI: 10.1186/1710-1492-10-14.

57. Peter C., Wesselborg S., Herrman M., Lauber K. Dangerous attraction: phagocyte recruitment and danger signals of apoptotic and necrotic cells. Apoptosis. 2010; 15 (9): 1007–1028. DOI: 10.1007/s10495-010-0472-1.

58. Потапнев М.П. Аутофагия, апоптоз, некроз клеток и иммунное распознавание своего и чужого. Иммунология. 2014; 35 (2): 95–102.

59. Парахонский А.П., Егорова C.B., Цыганок С.С. Механизмы программируемой гибели клеток периферической крови у больных бронхиальной астмой. Успехи современного естествознания. 2008; (8): 107–108.

60. Нсангу М.М.Д., Водунон А.С., Абрамова З.И., Лунцов А.В., Цибулькина В.Н. Особенности морфологических показателей и количественной оценки лимфоцитов периферической крови больных атопической бронхиальной астмой. Казанский медицинский журнал. 2007; 88 (2): 168–171.

61. Carmen M.M., Angela T., Fatina Z. Shed membrane microparticles from circulating and vascular cells in regulating vascular function. Am. J. Physiol. Heart Circ. Physiol. 2005; 288 (3): 1004–1009. DOI: 10.1152/ajpheart.00842.2004.

62. Инжутова А.И., Салмина А.Б., Петрова М.М. Регистрация блеббинга плазматической мембраны лимфоцитов периферической крови как экспресс- метод оценки тяжести состояния больных осложненными формами гипертонической болезни. Бюллетень СО РАМН. 2007; (1): 6–10.

63. Akers J.C., Gonda D., Kim R., Carter B.S., Chen C.C. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J. Neurooncol. 2013; 113 (1): 1–11. DOI: 10.1007/s11060-013-1084-8.

64. Buzas E.I., György B., Nagy G. Emerging role of extracellular vesicles in inflammatory diseases. Nat. Rev. Rheumatol. 2014; 10 (6): 356–364. DOI: 10.1038/nrrheum.2014.19.

65. Hwang I. Cell-cell communication via extracellular membrane vesicles and its role in the immune response. Molecules and Cells. 2013; 36 (2): 105–111. DOI: 10.1007/s10059-013-0154-2.

66. Пантелеевa М.А., Абаеваa А.А., Баландина А.Н., Беляевa А.В., Нечипуренковa Д.Ю., Обыденный С.И., Свешникова А.Н., Шибековa А.М., Атауллахановa Ф.И. Внеклеточные везикулы плазмы крови: состав, происхождение, свойства. Биологические мембраны. 2017; 34 (3): 155–161. DOI: 10.7868/S0233475517030069.

67. Hargett L.A., Bauer N.N. On the origin of microparticles: From “platelet dust” to mediators of intercellular communication. Pulm. Circ. 2013; 3 (2): 329– 340. DOI: 10.4103/2045-8932.114760.

68. Redzic J.S., Balaj L., van der Vos K.E., Breakefield X.O. Extracellular RNA mediates and marks cancer progression. Semin Cancer Biol. 2014; 28: 14–23. DOI: 10.1016/j.semcancer.2014.04.010.

69. Mostefai H.A., Agouni A., Carusio N., Mastronardi M.L., Heymes C., Henrion D., Andriantsitohaina R., Martinez M.C. Phosphatidylinositol 3-kinase and xanthine oxidase regulate nitric oxide and reactive oxygen species productions by apoptotic lymphocyte microparticles in endothelial cells. J. Immunol. 2008; 180 (7): 5028–5035. DOI: 10.4049/jimmunol.180.7.5028.

70. Franceschi C., Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci. 2014; 69 (1): 4–9. DOI: 10.1093/gerona/glu057.

71. Locksley R.M., Killeen N., Lenardo M.J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell. 2001; 104 (4): 487–501. DOI: 10.1016/S0092-8674(01)00237-9.

72. Чернышева Е.Н., Панова Т.Н. Взаимосвязь апоптоза и процессов преждевременного старения у больных с метаболическим синдромом. Саратовский научно-медицинский журнал. 2012; 8 (2): 251–255.


Review

For citations:


Solovieva I.A., Demko I.V., Sobko E.A., Kraposhina A.Yu., Gordeeva N.V., Anikin D.A., Anikina D.A. Features of apoptosis and blebbing of the lymphocyte plasma membrane in bronchial asthma. Bulletin of Siberian Medicine. 2021;20(2):176-183. https://doi.org/10.20538/1682-0363-2021-2-176-183

Views: 904


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)