Preview

Bulletin of Siberian Medicine

Advanced search

Modern methods for studying atherosclerosis and coronary artery disease: flow cytometry

https://doi.org/10.20538/1682-0363-2021-2-184-190

Abstract

 The problem of atherosclerosis, which forms the pathological basis of coronary artery disease (CAD), is one of the most discussed ones in development of cardiovascular diseases. This chronic inflammatory disease involves interactions between different cells, and an atherosclerotic plaque is a complex immunological environment. Modern  quantitative methods  increase the understanding of the pathophysiological processes responsible  for progression of atherosclerotic plaques. Flow cytometry is a powerful modern method that allows for a complex and simultaneous cell analysis. This review is devoted to studies on atherosclerosis and CAD performed  using flow cytometry.  

About the Authors

E. M. Stakhneva
Research Institute of Internal and Preventive Medicine (RIIPM) – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (Branch of ICG SB RAS)
Russian Federation

175/1, Bogatkova Str., Novosibirsk, 630089, Russian Federation



Yu. I. Ragino
Research Institute of Internal and Preventive Medicine (RIIPM) – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (Branch of ICG SB RAS)
Russian Federation

175/1, Bogatkova Str., Novosibirsk, 630089, Russian Federation



References

1. Хайдуков С.В., Зурочка А.В., Черешнев В.А. Цитометрический анализ в клинической иммунологии. Екатеринбург: УрО РАН, 2011: 220.

2. Феоктистова В.С., Вавилова Т.В., Сироткина О.В., Болдуева С.А., Гайковая Л.Б., Леонова И.А., Ласковец А.Б., Ермаков А.И. Новый подход к оценке дисфункции эндотелия: определение количества циркулирующих эндотелиальных клеток методом проточной цитометрии. Клиническая лабораторная диагностика. 2015; 60 (4): 23–39.

3. Boos C.J., Balakrishnan B., Blann A.D., Lip G.Y.H. The relationship of circulating endothelial cells to plasma indices of endothelial damage/dysfunction and apoptosis in acute coronary syndromes: implications for prognosis. J. Thromb. Haemost. 2008; 6 (11): 1841–1850. DOI: 10.1111/j.1538-7836.2008.03148.x.

4. Семёнова А.Е., Сергиенко И.В., Домбровский А.Л., Рвачева А.В. Роль эндотелиальных прогениторных клеток при атеросклерозе. Атеросклероз и дислипидемии. 2012, 3 (8): 14–24.

5. Fadini G.P., de Kreutzenberg S.V., Coracina A., Baesso I., Agostini C., Tiengo A., Avogaro A. Circulating CD34+ cells, metabolic syndrome, and cardiovascular risk. Eur. Heart J. 2006; 27 (18): 2247–2255. DOI: 10.1093/eurheartj/ehl198.

6. Zhou B., Ma F.X., Liu P.X., Fang Z.H., Wang S.L., Han Z.B., Poon M.C., Han Z.C. Impaired therapeutic vasculogenesis by transplantation of OxLDL-treated endothelial progenitor cells. J. Lipid. Res. 2007; 48 (3): 518–527. DOI: 10.1194/jlr.M600251-JLR200.

7. Vasa M., Fichtlscherer S., Aicher A., Adler K., Urbich C., Martin H., Zeiher A.M., Dimmeler S. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ. Res. 2001; 89 (1): e1–7. DOI: 10.1161/hh1301.093953.

8. Sen S., McDonald S.P., Coates P.T., Bonder C.S. Endothelial progenitor cells: novel biomarker and promising cell therapy for cardiovascular disease. Clin. Sci. (Lond.). 2011; 120 (7): 263–283. DOI: 10.1042/CS20100429.

9. Ai S., He Z., Ding R., Wu F., Huang Z., Wang J., Huang S., Dai X., Zhang J., Chen J., Liu L., Wu Z., Liang C. Reduced vitamin D receptor on circulating endothelial progenitor cells: A new risk factor of coronary artery diseases. J. Atheroscler. Thromb. 2018; 25 (5): 410–421. DOI: 10.5551/jat.40808.

10. Челомбитько М.А., Шишкина В.С., Ильинская О.П.,

11. Каминный А.И., Павлунина Т.О., Самовилова Н.Н., Грачева Е.В., Тарарак Э.М., Проказова Н.В. Цитофлуориметрическое изучение мембранных рафтов на субпопуляциях моноцитов человека при атеросклерозе. Acta Naturae. 2014, 6 (4): 86–94.

12. Thomas G.D., Hamers A.A.J., Nakao C., Marcovecchio P., Taylor A.M., McSkimming C., Nguyen A.T., McNamara C.A., Hedrick C.C. Human blood monocyte subsets: A new gating strategy defined using cell surface markers identified by mass cytometry. Arterioscler. Thromb. Vasc. Biol. 2017; 37 (8): 1548–1558. DOI: 10.1161/ATVBAHA.117.309145.

13. Luu N.T., Madden J., Calder P.C., Grimble R.F., Shearman C.P., Chan T., Tull S.P., Dastur N., Rainger G.E., Nash G.B. Comparison of the pro-inflammatory potential of monocytes from healthy adults and those with peripheral arterial disease using an in vitro culture model. Atherosclerosis. 2007. 193 (2): 259–268. DOI: 10.1016/j.atherosclerosis.2006.08.050.

14. Kapellos T.S., Bonaguro L., Gemünd I., Reusch N., Saglam A., Hinkley E.R., Schultze J.L. Human monocyte subsets and phenotypes in major chronic inflammatory diseases. Front. Immunol. 2019; 10: 2035. DOI: 10.3389/fimmu.2019.02035.

15. Arnold K.A., Blair J.E., Paul J.D., Shah A.P., Nathan S., Alenghat F.J. Monocyte and macrophage subtypes as paired cell biomarkers for coronary artery disease. Exp. Physiol. 2019; 104 (9): 1343–1352. DOI: 10.1113/EP087827.

16. Krychtiuk K.A., Kastl S.P., Pfaffenberger S., Lenz M., Hofbauer S.L., Wonnerth A., Koller L., Katsaros K.M., Pongratz T., Goliasch G., Niessner A., Gaspar L., Huber K., Maurer G., Dostal E., Wojta J., Oravec S., Speidl W.S. Association of small dense LDL serum levels and circulating monocyte subsets in stable coronary artery disease. PLoS One. 2015; 10 (4): e0123367. DOI: 10.1371/journal.pone.0123367.

17. Mráz M., Cinkajzlová A., Kloučková J., Lacinová Z., Kratochvílová H., Lipš M., Pořízka M., Kopecký P., Pierzynová A., Kučera T., Melenovský V., Stříž I., Lindner J., Haluzík M. Coronary artery disease is associated with an increased amount of T lymphocytes in human epicardial adipose tissue. Mediators Inflamm. 2019; 2019: 4075086. DOI: 10.1155/2019/4075086.

18. Oikonomopoulou K., Ricklin D., Ward P.A., Lambris J.D. Interactions between coagulation and complement – their role in inflammation. Semin. Immunopathol. 2012; 34 (1): 151–165. DOI: 10.1007/s00281-011-0280-x.

19. Mishra N., Mohata M., Narang R., Lakshmy R., Hazarika A., Pandey R.M., Das N., Luthra K. Altered expression of complement regulatory proteins CD35, CD46, CD55, and CD59 on leukocyte subsets in individuals suffering from coronary artery disease. Front. Immunol. 2019; 10: 2072. DOI: 10.3389/fimmu.2019.02072.

20. Гривель Ж.-Ш., Иванова О.И., Пинегина Н.В., Бланк П.С., Шпектор А.В., Марголис Л.Б., Васильева Е.Ю. Новый метод анализа клеточного состава атеросклеротических бляшек. Креативная кардиология. 2012; 1: 26–40.

21. Lebedeva A., Vorobyeva D., Vagida M., Ivanova O., Felker E., Fitzgerald W., Danilova N., Gontarenko V., Shpektor A., Vasilieva E., Margolis L. Ex vivo culture of human atherosclerotic plaques: A model to study immune cells in atherogenesis. Atherosclerosis. 2017; 267: 90–98. DOI: 10.1016/j.atherosclerosis.2017.10.003.

22. Curry M.P., Norris S., Golden-Mason L., Doherty D.G., Deignan T., Collins C., Traynor O., McEntee G.P., Hegarty J.E., O’Farrelly C. Isolation of lymphocytes from normal adult human liver suitable for phenotypic and functional characterization. J. Immunol. Methods. 2000; 242 (1-2): 21–31. DOI: 10.1016/s0022-1759(00)00204-0.

23. Bonanno Е., Mauriello A., Partenzi A., Anemona L., Spagnoli L.G. Flow cytometry analysis of atherosclerotic plaque cells from human carotids: a validation study. Cytometry. 2000; 39 (2): 158–165. DOI: 10.1002/(sici)1097-0320(20000201)39:2<158::aid-cyto9>3.0.co;2-8.

24. Willems S., Vink A., Bot I., Quax P.H., de Borst G.J., de Vries J.P., van de Weg S.M., Moll F.L., Kuiper J., Kovanen P.T., de Kleijn D.P., Hoefer I.E., Pasterkamp G. Mast cells in human carotid atherosclerotic plaques are associated with intraplaque microvessel density and the occurrence of future cardiovascular events. Eur. Heart J. 2013; 34 (48): 3699–3706. DOI: 10.1093/eurheartj/eht186.

25. Kovanen P.T., Bot I. Mast cells in atherosclerotic cardiovascular disease – Activators and actions. Eur. J. Pharmacol. 2017; 816: 37–46. DOI: 10.1016/j.ejphar.2017.10.013.

26. Kritikou E., Depuydt M.., de Vries M., Mulder K., Govaert A., Smit M., van Duijn J., Foks A., Wezel A., Smeets H., Slütter B., Quax P., Kuiper J., Bot I. Flow cytometry-based characterization of mast cells in human atherosclerosis. Cells. 2019; 8 (4): 334. DOI: 10.3390/cells8040334.

27. Winkels H., Ehinger E., Ghosheh Y., Wolf D., Ley K. Atherosclerosis in the single-cell era. Curr. Opin. Lipidol. 2018; 29 (5): 389–396. DOI: 10.1097/MOL.0000000000000537.

28. Grönberg C., Nilsson J., Wigren M. Recent advances on CD4+ T cells in atherosclerosis and its implications for therapy. Eur. J. Pharmacol. 2017; 816: 58–66. DOI: 10.1016/j. ejphar.2017.04.029.

29. Van Duijn J., van Elsas M., Benne N., Depuydt M., Wezel A., Smeets H., Bot I., Jiskoot W., Kuiper J., Slütter B. CD39 identifies a microenvironment-specific anti-inflammatory CD8+ T-cell population in atherosclerotic lesions. Atherosclerosis. 2019; 285: 71–78. DOI: 10.1016/j.atherosclerosis.2019.04.217.

30. Van Duijn J., Kritikou E., Benne N., van der Heijden T., van Puijvelde G.H., Kröner M.J., Schaftenaar F.H., Foks A.C., Wezel A., Smeets H., Yagita H., Bot I., Jiskoot W., Kuiper J., Slütter B. CD8+ T-cells contribute to lesion stabilization in advanced atherosclerosis by limiting macrophage content and CD4+ T-cell responses. Cardiovasc. Res. 2019; 115 (4): 729–738. DOI: 10.1093/cvr/cvy261.

31. Kyaw T., Tipping P., Toh B.-H., Bobik A. Killer cells in atherosclerosis. Eur. J. Pharmacol. 2017; 816: 67–75. DOI: 10.1016/j.ejphar.2017.05.009.

32. Pegram H.J., Andrews D.M., Smyth M.J., Darcy P.K., Kershaw M.H. Activating and inhibitory receptors of natural killer cells. Immunol. Cell Biol. 2011; 89 (2): 216–224. DOI:10.1038/icb.2010.78.

33. Griffiths G.M., Tsun A., Stinchcombe J.C. The immunological synapse: А focal point for endocytosis and exocytosis. J. Cell Biol. 2010; 189 (3): 399–406. DOI: 10.1083/jcb.201002027.

34. Zhu F.L., Zhang N., Ma X.J., Yang J., Sun W.P., Shen Y.Q., Wen Y.M., Yuan S.S., Zhao D., Zhang H.B., Feng Y.M. Circulating hematopoietic stem/progenitor cells are associated with coronary stenoses in patients with coronary heart disease. Sci. Rep. 2019; 9 (1): 1680. DOI: 10.1038/s41598-018-38298-5.


Review

For citations:


Stakhneva E.M., Ragino Yu.I. Modern methods for studying atherosclerosis and coronary artery disease: flow cytometry. Bulletin of Siberian Medicine. 2021;20(2):184-190. https://doi.org/10.20538/1682-0363-2021-2-184-190

Views: 863


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)