Preview

Бюллетень сибирской медицины

Расширенный поиск

Тромбоциты и регенерация

https://doi.org/10.20538/1682-0363-2021-2-216-227

Аннотация

 Представлен анализ данных, доказывающих участие тромбоцитов в механизмах регуляции репаративной регенерации тканей. Показано их влияние на повреждение,  апоптоз, пролиферацию клеток, ремоделирование  экстрацеллюлярного матрикса, ангиогенез и нейрогенез.  Дана оценка их взаимодействию с макрофагами в процессе  восстановления структуры поврежденных тканей.  Охарактеризованы некоторые тромбоцитарные  регенеративные факторы.  

Об авторе

Б. Г. Юшков
Институт иммунологии и физиологии Уральского отделения Российской академии наук (ИИФ УрО РАН)
Россия

 д-р мед. наук, профессор, чл.-корр. РАН, заслуженный деятель науки Российской Федерации, зав. лабораторией иммунофизиологии и иммунофармакологии 

Россия, 620049, г. Екатеринбург, ул. Первомайская, 106



Список литературы

1. Черешнев В.А., Юшков Б.Г., Климин В.Г., Буторина Е.В. Тромбоцитопоэз. М.: ОАО «Издательство Медицина», 2007: 272.

2. Simpson D.M., Ross R. The neutrophilic leukocyte in wound repair: a study with antineutrophil serum. The Journal of Clinical Investigation. 1972; 51 (8): 2009–2023. DOI: 10.1172/JCI107007.

3. Delavary B.M., van der Veer W.M., van Egmond M., Niessen F.B. Beelen R.H.J. Macrophages in skin injury and repair. Immunobiology. 2011; 216 (7): 753–762. DOI: 10.1016/j.imbio.2011.01.001.

4. Martin P., Leibovich S.J. Inflammatory cells during wound repair: The good, the bad and the ugly. Trends in Cell Biology. 2005; 15 (11): 599–607. DOI: 10.1016/j.tcb.2005.09.002.

5. Nurden A. Platelets, inflammation and tissue regeneration. Thromb. Haemost. 2011; 105 (1): 13–33. DOI: 10.1160/THS10-11-0720.

6. Thushara R.M., Hemshekhar M., Basappa Kemparaju K., Rangappa K.S, Girish K.S. Biologicals, platelet apoptosis and human diseases: An outlook. Crit. Rev. Oncol. Hematol. 2015; 93 (3): 149–158. DOI: 10.1016/j.critrevonc.2014.11.002.

7. Ma L., Elliott S.N., Cirino G., Buret A., Ignarro L.J., Wallace J.L. Platelets modulate gastric ulcer healing: Role of endostatin and vascular endothelial growth factor release. PNAS. 2001; 98 (11): 6470–6475. DOI: 10.1073/pnas.111150798.

8. Su C.Y., Kuo Y.P., Nieh H.L., Tseng Y.H., Burnouf T. Quantitative assessment of the kinetics of growth factors release from platelet gel. Transfusion. 2008; 48 (11): 2414. DOI: 10.1111/j.1537-2995.2008.01862.x.

9. Peterson J.E., Zurakowski D., Italiano J.E., Michel L.V., Fox L., Klement G.L., Folkman J. Normal ranges of angiogenesis regulatory proteins in human platelets. Am. J. Hematol. 2010; 85 (7): 487. DOI: 10.1002/ajh.21732.

10. Kuffler D.P. Platelet-rich plasma promotes axon regeneration, wound healing and pain reduction: Fact or fiction. Mol. Neurobiol. 2015; 52 (2): 990: 1014. DOI: 10.1007/s12035-015-9251-х.

11. Kakudo N., Morimoto N., Kushida S., Ogawa T., Kusumoto K. Platelet-rich plasma releasate promotes angiogenesis in vitro and in vivo. Med. Mol. Morphol. 2014; 47 (2): 83–89. DOI: 10.1007/s00795-013-0045-9.

12. Lacci K.M., Dardik A. Platelet-rich plasma: support for its use in wound healing. Yale J. Biol. Med. 2010; 83 (1): 1–9.

13. Flaumenhaft R., Sharda A. Platelet secretion. Platelets. Academic Press, 2019: 349–370. DOI: 10.1016/B978-0-12-813456-6.00019-9.

14. Meyer J., Lejmi E., Fontana P., Morel P., Gonelle-Gispert C., Bühler L. A focus on the role of platelets in liver regeneration: Do platelet-endothelial cell interactions initiate the regenerative process? Journal of Hepatology. 2015; 63 (5): 1263–1271. DOI: 10.1016/j.jhep.2015.07.002.

15. Rainys D., Samulėnas G., Kievišas M., Pilipaitytė L., Rimdeika R. Platelet biology and the rationale of PRP therapy in chronic wounds. Eur. J. Plast. Surg. 2017; 40 (2): 87–96. DOI: 10.1007/s00238-017-1279-x.

16. Flaumenhaft R. Platelet secretion. In: Platelets; Michelson A.D. (ed.); 3rd ed. Academic Press. Oxford, 2013: 343–366. DOI: 10.1016/B978-0-12-813456-6.00019-9.

17. Rendu F., Brohard-Bohn B. The platelet release reaction: ranules’ constituents, secretion and functions. Platelets. 2001; 12 (5): 261–273. DOI: 10.1080/09537100120068170.

18. Cheng Y., Austin S.C., Rocca B., Beverly H., Koller B.H., Coffman T.M., Grosser T., Lawson J.A., Fitz Gerald G.A. Role of prostacyclin in the cardiovascular response to thromboxane A2. Science. 2002; 296 (5567): 539–554. DOI: 10.1126/science.1068711.

19. Zhang O., Peyruchaud O., French K.J., Magnusson M.K., Mosher D.F. Sphingosine 1-phosphate stimulates fibronectin matrix assembly through a rho-dependent signal pathway. Blood. 1999; 93 (9): 2984–2990.

20. Weyrich A.S., Prescott S.M., Zimmerman G.A. Platelets, endothelial cells, inflammatory chemokines, and restenosis: complex signaling in the vascular play book. Circulation. 2002; 106 (12): 1433–1435. DOI: 10.1161/01.cir.0000033634.60453.22.

21. Stellos K., Langer H., Daub K., Schoenberger T., Gauss A., Geisler T., Bigalke B., Mueller I., Schumm M., Schaefer I., Seizer P., Kraemer B.F., Siegel-Axel D., May A.E., Lindemann S., Gawaz M. Platelet-derived stromal cell–derived factor-1 regulates adhesion and promotes differentiation of human CD34+ cells to endothelial progenitor cells. Home Circulation. 2008; 117 (2): 206–215. DOI: 10.1161/CIRCULATIONAHA.107.714691.

22. Stellos K., Kopf S., Paul A., Marquardt J., Gawaz M., Huard J., Langer H. Platelets in regeneration. Seminars in thrombosis and hemostasis. Thieme Medical Publishers. 2010; 36 (02): 175–184. DOI: 10.1055/s-0030-1251502.

23. Gong T., Liu L., Jiang W., Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol. 2020; 20 (2): 95–112. DOI: 10.1038/s41577-019-0215-7.

24. Petersen F., Brandt E. Platelet-derived chemokines in vascular biology. Thromb. Haemost. 2007; 97 (5): 704–713. DOI: 10.1160/th07-01-0066.

25. Stellos K., Sebastian Kopf S., Paul A., Marquardt J.U., Gawaz M., Huard J., Langer H.F. Platelets in regeneration. Seminars in thrombosis and hemostasis. Thieme Medical Publishers. 2010; 36 (02): 175–184. DOI: 10.1055/s-0030-1251502.

26. Gurtner G.C., Werner S., Barrandon Y., Longaker M.T. Wound repair and regeneration. Nature. 2008; 453 (7193): 314–321. DOI: 10.1038/nature07039.

27. Crowley S.T., Dempsey E.C., Horwitz K.B., Horwitz L.D. Platelet-induced vascular smooth muscle cell proliferation is modulated by the growth amplification factors serotonin and adenosine diphosphate. Circulation. 1994; 90 (4): 1908–1918. DOI: 10.1161/01.cir.90.4.1908.

28. Langer H.F., Stellos K., Steingen C. et al. Platelet derived bFGF mediates vascular integrative mechanisms of mesenchymal stem cells in vitro. J. Mol. Cell. Cardiol. 2009; 47 (2): 315–325. DOI: 10.1016/j.yjmcc.2009.03.011.

29. Denis J.F., Sader F., Gatien S., Villiard E., Anie Philip A., Roy S.. Activation of Smad2 but not Smad3 is required to mediate TGF-β signaling during axolotl limb regeneration. Development. 2016; 143 (19): 3481–3490. DOI: 10.1242/dev.131466.

30. Blavie L., Lazaryev A., Groffen J., Heisterkamp N,. DeClerck Y.A., Kaartinen V. TGF-β3-induced palatogenesis requires matrix metalloproteinases. Molecular Biology of the Cell. 2001; 12 (5): 1457–1466. DOI: 10.1091/mbc.12.5.1457.

31. Overall C.M., Wrana J.L., Sodek J. Transcriptional and post-transcriptional regulation of 72-kDa gelatinase - type IV collagenase by transforming growth factor-beta l in human fibroblasts comparisons with collagenase and tissue inhibitor of matrix metalloproteinase gen expression. J. Biol. Chem. 1991; 266 (21): 14064–14071.

32. Chen Y., Zhang W., Geng N., Tian K.,Windsor L.J. MMPs, TIMP‐2, and TGF‐β1 in the cancerization of oral lichen planus. Head Neck. 2008; 30 (9): 1237–1245. DOI: 10.1002/hed.20869

33. De Boer H.C., Verseyden C., Ulfman L.H., Zwaginga J.J., Bot I., Biessen E.A., Rabelink T.J., van Zonneveld A.J. Fibrin and activated platelets cooperatively guide stem cells to a vascular injury and promote differentiation towards an endothelial cell phenotype. Arterioscler. Thromb. Vasc. Biol. 2006; 26 (7): 1653–1659. DOI: 10.1161/01.ATV.0000222982.55731.f1.

34. Zernecke A., Schober A., Bot I., von Hundelshausen P., Liehn E.A., Möpps B., Mericskay M., Gierschik P., Biessen E.A., Weber C. SDF-1alpha/ CXCR4 axis is instrumental in neointimal hyperplasia and recruitment of smooth muscle progenitor cells. Circ. Res. 2005; 96 (7): 784–791. DOI: 10.1161/01.RES.0000162100.52009.38.

35. Lev E.I., Estrov Z., Aboulfatova K., Harris D., Granada J.F., Alviar C., Kleiman N.S., Dong J.F. Potential role of activated platelets in homing of human endothelial progenitor cells to subendothelial matrix. Thromb. Haemost. 2006; 96 (4): 498–504.

36. Askari A.T., Unzek S., Popovic Z.B., Goldman C.K., Forudi F., Kiedrowski M., Rovner A., Ellis S.G., Thomas J.D., Di Corleto P.E., Topol E.J., Penn, M.S. Effect of stromal-cell-derived factor-1 on stem cell homing and tissue regeneration in ischemic cardiomyopathy. Lancet. 2003; 362 (9385): 697–703. DOI: 10.1016/S0140-6736(03)14232-8.

37. Li Y., Yu X.Y., Lin S.G., Li X.H., Zhang S., Song Y-H. Insulin- like growth factor 1 enhances the migratory capacity of mesenchymal stem cells. Biochem. Biophys. Res. Commun. 2007; 356 (3): 780–784. DOI: 10.1016/j.bbrc.2007.03.049.

38. Loyer X., Vion A.C., Tedgui A., Boulanger C.M. Microvesicles as cell–cell messengers in cardiovascular diseases. Circulation Research. 2014; 114 (2): 345–353. DOI: 10.1161/CIRCRESAHA.113.300858.

39. Raposo G., Stoorvogel W. Extracellular vesicles: exosomes, microvesicles and friends. J. Cell Biol. 2013; 200 (4): 373–383. DOI: 10.1083/jcb.201211138.

40. Forlow S.B., McEver R.P., Nollert M.U. Leukocyte-leukocyte interactions mediated by platelet microparticles under flow. Blood. 2000; 95 (4): 1317–1323. DOI: 10.1182/blood.V95.4.1317.004k30_1317_1323.

41. Gawaz M., Vogel S. Platelets in tissue repair: control of apoptosis and interactions with regenerative cells. Blood. 2013; 122 (15): 2550–2554. DOI: 10.1182/кровь-2013-05-468694.

42. Ahmad R., Menezes J., Knafo L., Ahmad A. Activated human platelets express Fas-L and induce apoptosis in Fas-positive tumor cells. J. Leukoc. Biol. 2001; 69 (1): 123–128.

43. André P., Nannizzi-Alaimo L., Prasad S.K., Phillips D.R. Platelet-derived CD40L: the switch-hitting player of Cardiovascular disease. Circulation. 2002; 106 (8): 896–899. DOI: 10.1161/01.cir.0000028962.04520.01.

44. Crist S.A., Elzey B.D., Ludwig A.T., Griffith T.S., Staack J.B., Lentz S.R., Ratliff T.L. Expression of TNF-related apoptosis- inducing ligand (TRAIL) in megakaryocytes and platelets. Exp. Hematol. 2004; 32 (11): 1073–1081. DOI: 10.1016/j.exphem.2004.07.022.

45. Meyer T., Amaya M., Desai H., Robles-Carrillo L., Hatfield M., Francis J.L., Amirkhosravi A. Human platelets contain and release TWEAK. Platelets. 2010; 21 (7): 571–574. DOI: 10.3109/09537104.2010.512403.

46. Otterdal K., Smith C., Oie E., Pedersen T.M., Yndestad A., Stang E., Endresen K., Solum N.O., Aukrust P., Damås J.K. Platelet-derived LIGHT induces inflammatory responses in endothelial cells and monocytes. Blood. 2006; 108 (3): 928–935. DOI: 10.1182/кровь-2005-09-010629.

47. Nakamura T., Teramoto H., Ichihara A. Purification and characterization of a growth factor from rat platelets for mature parenchymal heыpatocytes in primary cultures. Proc. Natl. Acad. Sci. USA. 1986; 83 (17): 6489–6493. DOI: 10.1073/pnas.83.17.6489.

48. Pakala R., Willerson J.T., Benedict C.R. Mitogenic effect of serotonin on vascular endothelial cells. Circulation. 1994; 90 (4): 1919–1926. DOI: 10.1161/01.cir.90.4.1919.

49. Hisano N., Yatomi Y., Satoh K. Akimoto S., Mitsumata M., Fujino M.A., Ozaki Y. Induction and suppression of endothelial cell apoptosis by sphingolipids: a possible in vitro model for cell-cell interactions between platelets and endothelial cells. Blood. 1999; 93 (12): 4293–4299.

50. Юшков Б.Г., Климин В.Г., Ткаченко А.Е., Дугина Е.А. Структурный гомеостаз. М.: Комментарий, 2019: 200.

51. Blair P., Flaumenhaft R. Platelet alpha-granules: basic biology and clinical correlates. Blood Rev. 2009; 23 (4): 177–189. DOI: 10.1016/j.blre.2009.04.001.

52. Langer H.F., Gawaz M. Platelets in regenerative medicine. Basic Res. Cardiol. 2008; 103 (4): 299–307. DOI: 10.1007/s00395-008-0721-4.

53. Maloney J.P., Silliman C.C., Ambruso D.R., Wang J., Tuder R.M., Voelkel N.F. In vitro release of vascular endothelial growth factor during platelet aggregation. Am. J. Physiol. 1998; 275 (3 Pt 2): 1054–1061. DOI: 10.1152/ajpheart.1998.275.3.H1054.

54. Kobayashi T., Hamano K., Li T.S., Nishida M., Ikenaga S., Hirata K., Zempo N., Esato K. Angiogenesis induced by the injection of peripheral leukocytes and platelets. J. Surg. Res. 2002; 103 (2): 279–286. DOI: 10.1006/jsre.2001.6309.

55. Kisucka J., Butterfield C.E., Duda D.G., Eichenberger S.C., Saffaripour S., Ware J., Ruggeri Z.M., Jain R.K., Folkman J., Wagner D.D. Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage. Proc. Natl. Acad. Sci. USA. 2006; 103 (4): 855–860. DOI: 10.1073/pnas.0510412103.

56. Rhee J.S., Black M., Schubert U., Fischer S., Morgenstern E., Hammes H.P., Preissner K.T. The functional role of blood platelet components in angiogenesis. Thromb. Haemost. 2004; 92 (2): 394–402. DOI: 10.1160/TH03-04-0213.

57. Martínez C.E., Smith P.C., Alvarado V.A.P. The influence of platelet-derived products on angiogenesis and tissue repair: a concise update. Front. Physiol. 2015, 6: 290. DOI: 10.3389/fphys.2015.00290.

58. Banks R.E., Forbes M.A., Kinsey S.E., Stanley A., Ingham E., Walters C., Selby P.J. Release of the angiogenic cytokine vascular endothelial growth factor (VEGF) from platelets: significance for VEGF measurements and cancer biology. Br. J. Cancer. 1998; 77 (6): 956–964. DOI: 10.1038/bjc.1998.158.

59. Wartiovaara U., Salven P., Mikkola H., Lassila R., Kaukonen J., Joukov V., Orpana A., Ristimäki A., Heikinheimo M., Joensuu H., Alitalo K., Palotie A. Peripheral blood platelets express VEGF-C and VEGF which are released during platelet activation. Thromb. Haemost. 1998; 80 (1): 171–175.

60. Verheul H.M., Hoekman K., Luykx-de Bakker S., Eekman C.A., Folman C.C., Broxterman H.J., Pinedo H.M. Platelet: transporter of vascular endothelial growth factor. Clin. Cancer Res. 1997; 3(12 Pt 1): 2187–2190.

61. Li J.J., Huang Y.Q., Basch R., Karpatkin S. Thrombin induces the release of angiopoietin-1 from platelets. Thromb. Haemost. 2001; 85 (2): 204–206.

62. Italiano J.E., Richardson J.L., Patel-Hett S., Battinelli E., Zaslavsky A., Short S., Ryeom S., Folkman J., Klement G.L. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood. 2008; 111 (3): 1227–1233. DOI: 10.1182/blood-2007-09-113837.

63. Klement G.L., Yip T.T., Cassiola F, Kikuchi L., Cervi D., Podust V., Italiano J.E., Wheatley E., Abou-Slaybi A., Bender E., Almog N., Kieran M.W., Folkman J. Platelets actively sequester angiogenesis regulators. Blood. 2009; 113 (12): 2835–2842. DOI: 10.1182/blood-2008-06-159541.

64. Jurasz P., Alonso D., Castro-Blanco S., Murad F., Radomski M.W. Generation and role of angiostatin in human platelets. Blood. 2003; 102 (9): 3217–3223. DOI: 10.1182/кровь-2003-02-0378.

65. O’Reilly M.S., Boehm T., Shing Y., Fukai N., Vasios G., Lane W.S., Flynn E., Birkhead J.R., Olsen B.R., Folkman J. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 1997; 88 (2): 277–285. DOI: 10.1016/s0092-8674(00)81848-6.

66. Maione T.E., Gray G.S., Petro J., Hunt A.J., Donner A.L., Bauer S.I., Carson H.F., Sharpe R.J. Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science. 1990; 247 (4938): 77–79. DOI: 10.1126/science.1688470.

67. Iruela-Arispe M.L., Bornstein P., Sage H. Thrombospondin exerts an antiangiogenic effect on cord formation by endothelial cells in vitro. Proc. Natl. Acad. Sci. USA. 1991; 88 (11): 5026–5030. DOI: 10.1073/pnas.88.11.5026.

68. Kopp H.G., Hooper A.T., Broekman M.J., Avecilla S.T., Petit I., Luo M., Milde T., Ramos C.A., Zhang F.,Kopp T., Bornstein P., Jin D.K., Marcus A.J., Rafii S. Thrombospondins deployed by thrombopoietic cells determine angiogenic switch and extent of revascularization. J. Clin. Invest. 2006; 116 (12): 3277–3791. DOI: 10.1172/JCI29314.

69. Pipili-Synetos E., Papadimitriou E., Maragoudakis M.E. Evidence that platelets promote tube formation by endothelial cells on matrigel. Br. J. Pharmacol. 1998; 125 (6): 1252–1257. DOI: 10.1038/sj.bjp.0702191.

70. Brill A., Dashevsky O., Rivo J., Gozal Y., Varon D. Platelet- derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc Res. 2005; 67 (1): 30–38. DOI: 10.1016/j.cardiores.2005.04.007.

71. Lamalice L., Le Boeuf F., Huot J. Endothelial cell migration during angiogenesis. Circ. Res. 2007; 100 (6): 782–794. DOI: 10.1161/01.RES.0000259593.07661.1 e.

72. Van Weel V., van Tongeren R.B., van Hinsbergh V.W., van Bockel J.H., Quax P.H. Vascular growth in ischemic limbs: a review of mechanisms and possible therapeutic stimulation. Ann. Vasc. Surg. 2008; 22 (4): 582–597. DOI: 10.1016/j.avsg.2008.02.017.

73. Ткачук В.А., Плеханова О.С., Белоглазова И.Б., Парфенова Е.В. Роль мультидоменной структуры урокиназы в регуляции роста и ремоделирования сосудов. Укр. биохим. журн. 2013; 85 (6): 18–45.

74. Духинова М.С., Пономарев Е.Д. Роль тромбоцитов в нейровоспалительных заболеваниях. Обзор. Вестн. Моск. ун-та. 2018; 73 (3): 125–131.

75. Комиссарова С.Н. Регенерация нейронов коры головного мозга при экспериментальном геморрагическом инсульте: влияние тромбоцитов и моделированных эффектов микрогравитации: автореф. дис. … канд. биол. наук. М.; 2015: 25.

76. Farrag T.Y., Lehar M., Verhaegen P., Carson K.A., Byrne P.J. Effect of platelet rich plasma and fibrin sealant on facial nerve regeneration in a rat model. Laryngoscope. 2007; 117 (1): 157. DOI: 10.1097/01.mlg.0000249726.98801.77.

77. Sariguney Y., Yavuzer R., Elmas C., Yenicesu I., Bolay H., Atabay K. Effect of platelet-rich plasma on peripheral nerve regeneration. J. Reconstr. Microsurg. 2008; 24 (3): 159. DOI: 10.1055/s-2008-1076752.

78. Piskin A., Kaplan S., Aktas A., Ayyildiz M., Raimondo S., Alic T. et al. Platelet gel does not improve peripheral nerve regeneration: an electrophysiological, stereological, and electron microscopic study. Microsurgery. 2009; 29 (2): 144–153. DOI: 10.1002/micr.20599.

79. Kaplan S., Piskin A., Ayyildiz M., Aktas A., Koksal B., Ulkay M.B. et al. The effect of melatonin and platelet gel on sciatic nerve repair: an electrophysiological and stereological study. Microsurgery. 2011; 31 (4): 306. DOI: 10.1002/micr.20876.

80. Dagum A.B. Peripheral nerve regeneration, repair, and grafting. J. Hand. Ther. 1998; 11 (2): 111–117. DOI: 10.1016/s0894-1130(98)80007-0.

81. Galla T.J., Vedecnik S.V., Halbgewachs J., Steinmann S., Friedrich C., Stark G.B. Fibrin/Schwann cell matrix in poly-epsiloncaprolactone conduits enhances guided nerve regeneration. Int. J. Artif. Organs. 2004; 27 (2): 127–136. DOI: 10.1177/039139880402700208.

82. Povlsen B. A new fibrin seal in primary repair of peripheral nerves. J. Hand. Surg. (Br.). 1994; 19 (1): 43–47. DOI: 10.1016/0266-7681(94)90048-5.

83. Gao C., Ma S., Ji Y., Wang J.E., Li J. Siatic nerve regeneration in rats stimulated by fibrin glue containing nerve growth factor: an experimental study. Injury. 2008; 39 (12): 1414–1420. DOI: 10.1016/j.injury.2008.05.010.

84. Johnson P.J., Tatara A., Shiu A., Sakiyama-Elbert S.E. Controlled release of neurotrophin-3 and platelet-derived growth factor from fibrin scaffolds containing neural progenitor cells enhances survival and differentiation into neurons in a subacute model of SCI. Cell Transplant. 2010; 19 (1): 89–101. DOI: 10.3727/096368909X477273.

85. Willerth S.M., Rader A., Sakiyama-Elbert S.E. The effect of controlled growth factor delivery on embryonic stem cell differentiation inside fibrin scaffolds. Stem. Cell. Res. 2008; 1 (3): 205–218. DOI: 10.1016/j.scr.2008.05.006.

86. Wood M.D., Moore A.M., Hunter D.A., Tuffaha S., Borschel G.H., Mackinnon S.E. et al. Affinity-based release of glialderived neurotrophic factor from fibrin matrices enhances sciatic nerve regeneration. Acta Biomater. 2009; 5 (4): 959–968. DOI: 10.1016/j.actbio.2008.11.008.

87. Cho H.H., Jang S., Lee S.C., Jeong H.S., Park J.S., Han J.Y. et al. Effect of neural-induced mesenchymal stem cells and platelet-rich plasma on facial nerve regeneration in an acute nerve injury model. Laryngoscope. 2010; 120 (5): 907–913. DOI: 10.1002/lary.20860.

88. Lichtenfels M., Colome L., Sebben A.D., Braga-Silva J. Effect of platelet rich plasma and platelet rich fibrin on sciatic nerve regeneration in a rat model. Microsurgery. 2013; 33 (5): 383–390. DOI: 10.1002/micr.22105.

89. Elgazzar R.F., Mutabagani M.A., Abdelaal S.E., Sadakah A.A. Platelet rich plasma may enhance peripheral nerve regeneration after cyanoacrylate reanastomosis: a controlled blind study on rats. Int. J. Oral. Maxillofac Surg. 2008; 37 (8): 748–755. DOI: 10.1016/j.ijom.2008.05.010.

90. Emel E., Ergun S.S., Kotan D., Gursoy E.B., Parman Y., Zengin A. et al. Effects of insulin-like growth factor I and platelet-rich plasma on sciatic nerve crush injury in a rat model. J. Neurosurg. 2011; 114 (2): 522–528. DOI: 10.3171/2010.9.JNS091928.

91. Ding X.G., Li S.W., Zheng X.M., Hu L.Q., Hu W.L., Luo Y. The effect of platelet-rich plasma on cavernous nerve regeneration in a rat model. Asian. J. Androl. 2009; 11 (2): 215–221. DOI: 10.1038/aja.2008.37.

92. Godwin J.W., Pinto A.R., Rosenthal N.A. Macrophages are required for adult salamander limb regeneration. Proceedings of the National Academy of Sciences. 2013; 110 (23): 9415–9420. DOI: 10.1073/pnas.1300290110.

93. Lehenkari P.P., Kellinsalmi M., Näpänkangas J.P., Ylitalo K.V., Mönkkönen J., Rogers, M.J., Azhayev A., Väänänen H.K., Hassinen I.E. Further insight into mechanism of action of clodronate: inhibition of mitochondrial ADP/ATP translocase by a nonhydrolyzable, adenine-containing metabolite. Molecular Pharmacology. 2002; 61 (5): 1255–1262. DOI: 10.1124/mol.61.5.1255.

94. Frantz S., Hofmann U., Fraccarollo D., Schäfer A., Kranepuhl S., Hagedorn I. Nieswandt B. Nahrendorf M., Wagner H. Bayer B., Pachel C., Schön M., Kneitz S., Bobinger T., Weidemann F., Ertl G., Bauersachs J. Monocytes/macrophages prevent healing defects and left ventricular thrombus formation after myocardial infarction. The FASEB Journal. 2013; 27 (3): 871–881. DOI: 10.1096/fj.12-214049.

95. Van Amerongen M.J., Harmsen M.C., Rooijen N., Petersen A.H., van Luyn M.J.A. Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. The American Journal of Pathology. 2007; 170 (3): 818–829. DOI: 10.2353/ajpath.2007.060547.

96. Goren I., Allmann N., Yogev N., Schürmann C., Linke A., Holdene M., Waisman A., Pfeilschifter J., Frank S. A transgenic mouse model of inducible macrophage depletion: effects of diphtheria toxin-driven lysozyme M-specific cell lineage ablation on wound inflammatory, angiogenic, and contractive processes. The American Journal of Pathology. 2009; 175 (1): 132–147. DOI: 10.2353/ajpath.2009.081002.

97. Martinez F.O., Sica A., Mantovani A., Locati M. Macrophage activation and polarization. Front. Biosci. 2008; 13: 453–461. DOI: 10.2741/2692.

98. Gensel J.C., Zhang B. Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Research. 2015; 1619: 1–11. DOI: 10.1016/j.brainres.2014.12.045.

99. Wynn T.A., Chawla A., Pollard J.W. Macrophage biology in development, homeostasis and disease. Nature. 2013; 496 (7446): 445–455. DOI: 10.1038/nature12034.

100. Nickaeen N., Ghaisari J., Heiner M., Moein S., Gheisari Y. Agent-based modeling and bifurcation analysis reveal mechanisms of macrophage polarization and phenotype pattern distribution. Sci. Rep. 2019; 9 (1): 12764. DOI: 10.1038/s41598-019-48865-z.

101. Daley J.M., Brancato S.K., Thomay A.A., Reichner J.S., Albina J.E. The phenotype of murine wound macrophages. J. Leukoc. Biol. 2010; 87 (1): 59–67. DOI: 10.1189/jlb.0409236.

102. Pawelski H., Lang D., Reuter S. Interactions of monocytes and platelets: implication for life. Frontiers in Bioscience.2014; 6: 75–91. DOI: 10.2741/s416.

103. Mei J., Liu Y., Dai N., Favara M., Greene T., Jeyaseelan S., Poncz M., Lee J.S., Worthen G.S. CXCL5 regulates chemokine scavenging and pulmonary host defense to bacterial infection. Immunity. 2010; 33 (1): 106–117. DOI: 10.1016/j.immuni.2010.07.009.

104. Kluge A., Reuter G., Lee H., Ruch-Heeger B., Schauer R. Interaction of rat peritoneal macrophages with homologous sialidase-treated thrombocytes in vitro: biochemical and morphological studies. Detection of N-(O-acetyl) glycoloylneuraminic acid. European Journal of Cell Biology. 1992; 59 (1): 12–20.

105. Hortle E., Johnson K.E., Johansen M.D., Nguyen T., Shavit J.A.,Britton W.J., Tobin D.M., Stefan H., Oehlers S.H. Thrombocyte inhibition restores protective immunity to mycobacterial infection in Zebrafish. The Journal of Infectious Diseases. 2019; 220 (3): 524–534. DOI: 10.1093/infdis/jiz110.

106. Dixon D.A., Tolley N.D., Bemis-Standoli K., Martinez M.L., Weyrich A.S., Morrow J.D., Prescott S.M., Zimmerman G.A. Expression of COX-2 in platelet-monocyte interactions occurs via combinatorial regulation involving adhesion and cytokine signaling. J. Clin. Invest. 2006; 116 (10): 2727–2738. DOI: 10.1172/JCI27209.

107. Boehlen F., Clemetson K.J. Platelet chemokines and their receptors: what is their relevance to platelet storage and transfusion practice? Transfus. Med. 2001; 11 (6): 403–417. DOI: 10.1046/j.1365-3148.2001.00340.x.

108. Petrucci G., de Cristofaro R., Rutella S., Ranelletti F.O., Pocaterra D., Lancellotti S., Habib A., Patrono C., Rocca B. Prostaglandin E2 differentially modulates human platelet function through the prostanoid EP2 and EP3 receptors. J. Pharmacol. Exp. Ther. 2011; 336 (2): 391–402. DOI: 10.1124/jpet.110.174821.

109. Passacquale G., Vamadevan P., Pereira L., Hamid C., Corrigall V., Ferro A. Monocyte-platelet interaction induces a pro-inflammatory phenotype in circulating monocytes. PLoS One. 2011; 6 (10): 25595. DOI: 10.1371/journal.pone.0025595.

110. Stephen J., Emerson B., Fox K.A., Dransfield I. The uncoupling of monocyte-platelet interactions from the induction of proinflammatory signaling in monocytes. J. Immunol. 2013; 191 (11): 5677–5683. DOI: 10.4049/jimmunol.1301250.

111. Scull C.M., Hays W.D., Fischer T.H. Macrophage pro-inflammatory cytokine secretion is enhanced following interaction with autologous platelets. J. Inflamm. (Lond.). 2010; 7: 53–58. DOI: 10.1186/1476-9255-7-53.

112. Vieira-de-Abreu A., Campbell R.A., Weyrich A.S., Zimmerman G.A. Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum. Semin. Immunopathol. 2012; 34 (1): 5–30. DOI: 10.1007/s00281-011-0286-4.

113. Mause S.F., von Hundelshausen P., Zernecke A., Koenen R.R., Weber C. Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium. Arteriosclerosis, Thrombosis, and Vascular Biology. 2005; 25 (7): 1512–1518. DOI: 10.1161/01.ATV.0000170133.43608.37.

114. Marfaing-Koka A., Maravic M., Humbert M., Galanaud P., Emllie D. Contrasting effects of IL-4, IL-10 and corticosteroids on RANTES production by human monocytes. International Immunology. 1996; 8 (10): 1587–1594. DOI: 10.1093/intimm/8.10.1587.

115. Corken A., Russell S., Dent J., Post S.R., Ware J. Platelet glycoprotein Ib-IX as a regulator of systemic inflammation. Arterioscler. Thromb. Vasc. Biol. 2014; 34 (5): 996–1001. DOI: 10.1161/ATVBAHA.113.303113.

116. Langer H.F., Daub K., Braun G., Schönberger T., May A.E., Schaller M., Stein G.M., Stellos K., Bueltmann A., Siegel-Axel D., Wendel H.P., Aebert H., Roecken M., Seizer P., Santoso S., Wesselborg S., Brossart P., Gawaz M. Platelets recruit human dendritic cells via Mac-1/JAM-C interaction and modulate dendritic cell function in vitro. Arterioscler. Thromb. Vasc. Biol. 2007; 27 (6): 1463–1470. DOI: 10.1161/ATVBAHA.107.141515.

117. Hagihara M., Higuchi A., Tamura N., Ueda Y., Hirabayashi K., Ikeda Y., Kato S., Sakamoto S., Hotta T., Handa S., Goto S.

118. Platelets, after exposure to a high shear stress, induce IL-10- producing, mature dendritic cells in vitro. J. Immunol. 2004; 172 (9): 5297–5303. DOI: 10.4049/jimmunol.172.9.5297.

119. Vasina E., Cauwenberghs S., Feijge M., Heemskerk J., Weber C., Koenen R. Microparticles from apoptotic platelets promoter sident macrophage differentiation. Cell Death Dis. 2011; 2 (9): 211. DOI: 10.1038/cddis.2011.94.


Рецензия

Для цитирования:


Юшков Б.Г. Тромбоциты и регенерация. Бюллетень сибирской медицины. 2021;20(2):216-227. https://doi.org/10.20538/1682-0363-2021-2-216-227

For citation:


Yushkov B.G. Platelets and regeneration. Bulletin of Siberian Medicine. 2021;20(2):216-227. https://doi.org/10.20538/1682-0363-2021-2-216-227

Просмотров: 1222


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)