Platelet aggregation under the conditions of vortex flow in vitro in patients with chronic heart failure
https://doi.org/10.20538/1682-0363-2022-2-122-128
Abstract
Aim. To compare the effect of increased concentrations of aggregation inducers (five-fold addition) under standard conditions and under the conditions of vortex flow in vitro on platelet aggregation in patients with chronic heart failure (CHF).
Materials and methods. The study included 28 patients. The activity of platelet aggregation in platelet-rich plasma (PRP) was evaluated according to light transmission curves (%) and the average size of aggregates (relative units (rel. units)). The aggregation inducer was added once at 10 seconds of the study (standard procedure) and five times at 10 seconds, 1, 2, 3, and 4 minutes of the study with a constant stirring rate of 800 rpm. The same parameters were evaluated under the conditions of vortex flow, which was created by changing the stirring rate of the PRP from 800 rpm to 0 rpm and again to 800 rpm by pressing the centrifugation button on the analyzer.
Results. In the course of the study, the size of the aggregates increased in patients with CHF only under the conditions of vortex flow. When a collagen aggregation inducer was added both at the concentration of 2 mmol / l and 10 mmol / l, platelet aggregation parameters increased under the conditions of vortex flow. During the study of epinephrine-induced platelet aggregation in patients with CHF, an increase in the aggregation parameters was revealed, both at five-fold addition of the inducer and under the conditions of vortex flow compared with the standard method.
Conclusion. The proposed methodological approaches to creating the conditions for vortex flow in vitro and to five-fold addition of epinephrine showed an increase in the size of the aggregates and the degree of platelet aggregation. Collagen-induced aggregation under the conditions of vortex flow revealed 7 (25%) patients with high residual platelet reactivity (HRPR), and epinephrine-induced aggregation detected 15 (54%) patients with HRPR.
About the Authors
O. A. TrubachevaRussian Federation
111a, Kievskaya Str., Tomsk, 634012
I. V. Kologrivova
Russian Federation
111a, Kievskaya Str., Tomsk, 634012
T. E. Suslova
Russian Federation
111a, Kievskaya Str., Tomsk, 634012
A. V. Swarovskaya
Russian Federation
111a, Kievskaya Str., Tomsk, 634012
A. A. Garganeeva
Russian Federation
111a, Kievskaya Str., Tomsk, 634012
References
1. Гуськова Е.В., Панченко Е.П., Комаров А.Л., Добровольский А.Б., Самко А.Н. Остаточная реактивность тромбоцитов к АДФ и риск кровотечений у больных стабильной ИБС, получающих двойную антиромбоцитарную терапию в связи с плановым чрескожным коронарным вмешательством. Российский кардиологический журнал. 2015;3(119):35–42. DOI: 10.15829/1560-4071-2015-3-35-42.
2. Трубачева О.А., Суслова Т.Е., Гусакова А.М., Кологривова И.В., Шнайдер О.Л., Завадовский К.В. и др. Высокая остаточная агрегационная активность тромбоцитов у пациентов с ишемической болезнью сердца: новый методический подход к выявлению. Бюллетень сибирской медицины. 2021;20(2):113–119. DOI: 10.20538/1682-0363-2021-2-113-119.
3. Сваровская А.В., Тепляков А.Т. Инсулинорезистентность при сахарном диабете. Контроль над риском кардиоваскулярных осложнений. Томск: НИИ кардиологии, Томский НИМЦ, 2018:196.
4. Jastrzebska M., Marcinowska Z., Oledzki S. et al. Variable gender-dependent platelet responses to combined antiplatelet therapy in patients with stable coronary-artery disease. Journal of Physiology and Pharmacology. 2018;69(4):595–605. DOI: 10.26402/jpp.2018.4.10.
5. Stone G.W., Witzenbichler B., Weisz G., Rinaldi M.J., Neumann F.-J., Metzger D.C. et al. Platelet reactivity and clinical outcomes after coronary artery implantation of drug-eluting stents (ADAPT-DES): a prospective multicentre registry study. Lancet. 2013;382(9892):614–623. DOI: 10.1016/S0140-6736(13)61170-8.
6. Мирзаев К.Б., Андреев Д.А., Сычев Д.А. Оценка агрегации тромбоцитов в клинической практике. Рациональная фармакотерапия в кардиологии. 2015;11(1):85–91.
7. Трубачева О.А. и соавт. Способ определения высокой остаточной реактивности тромбоцитов у пациентов с ишемической болезнью сердца, находящихся на антиагрегантной терапии. Патент России RU № 2743808 C1.
8. Aradi D., Storey R.F., Komocsi A., Trenk D., Gulba D., Kiss R.G. et al. Expert position paper on the role of platelet function testing in patients undergoing percutaneous coronary intervention. Eur. Heart J. 2014;35(4):209–215. DOI: 10.1093/eurheartj/eht375.
9. Jastrzebska M., Marcinowska Z., Oledzki S. et al. Variable gender-dependent platelet responses to combined antiplatelet therapy in patients with stable coronary-artery disease. Journal of Рhysiology and Рharmacology. 2018;69(4):595–605. DOI: 10.26402/jpp.2018.4.10.
10. Kroll M.H., Hellums J.D., Mcintire L.V., Schafer A.I., Moake J.L. Platelets and shear stress. Blood. 1996;88(5):1525–1541.
11. Goldsmith H.L., Turitto V.T. Rheological aspects of thrombosis and haemostasis: basic principles and applications. ICTH-report–subcommittee on rheology of the international committee on thrombosis and haemostasis. Thromb. Haemost. 1986;55(3):415–435. DOI: 10.1055/s-0038-1661576.
12. Lipowsky H.H., Kovalcheck S., Zweifach B.W. The distribution of blood rheological parameters in the microvasculature of cat mesentery. Circ. Res. 1978;43(5):738–749. DOI: 10.1161/01.RES.43.5.738.
13. Basmadjian D. The effect of flow and mass transport in thrombogenesis. Ann. Biomed. Eng. 1990;18(6):685–709. DOI: 10.1007/BF02368455.
14. Gogia S., Neelamegham S. Role of fluid shear stress in regulating VWF structure, function and related blood disorders. Biorheology. 2015;52(5-6):319–335. DOI: 10.3233/BIR15061.
15. Sakariassen K.S. Thrombus formation on apex of arterial stenoses: the need for a fluid high shear stenosis diagnostic device. Fut. Cardiol. 2007;3(2):193–201. DOI: 10.2217/14796678.3.2.193.
16. Nesbitt W.S., Westein E., Tovar-Lopez F.J., Tolouei E., Mitchell A., Fu J. et al. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat. Med. 2009;15(6):665–673. DOI: 10.1038/nm.1955.
17. Sakariassen K.S., Orning L., Turitto V.T. The impact of blood shear rate on arterial thrombus formation. Future Sci. OA. 2015;1(4):FSO30. DOI: 10.4155/fso.15.28.
18. Rinder C.S., Student L.A., Bonan J.L., Rinder H.M., Smith B.R. Aspirin does not inhibit adenosine diphosphate-induced platelet alpha-granule release. Blood. 1993;82(2):505–512.
19. Barstad R.M., Orvim U., Hamers M.J., Tjonnfjord G.E., Brosstad F.R., Sakariassen K.S. Reduced effect of aspirin on thrombus formation at high shear and disturbed laminar blood flow. Thromb. Haemost. 1996;75(5):827–832. DOI: 10.1055/s-0038-1650374.
20. Weiss H.J., Turitto V.T. Prostacyclin (prostaglandin I2, PGI2) inhibits platelet adhesion and thrombus formation on subendothelium. Blood. 1979;53(2):244–250.
21. Borgdorff P., Tangelder G.J., Paulus W.J. Cyclooxygenase-2 inhibitors enhance shear stress-induced platelet aggregation. J. Am. Coll. Cardiol. 2006;48(4):817–823. DOI: 10.1016/j.jacc.2006.03.053.
Review
For citations:
Trubacheva O.A., Kologrivova I.V., Suslova T.E., Swarovskaya A.V., Garganeeva A.A. Platelet aggregation under the conditions of vortex flow in vitro in patients with chronic heart failure. Bulletin of Siberian Medicine. 2022;21(2):122-128. https://doi.org/10.20538/1682-0363-2022-2-122-128