Галектины: потенциальная фармакологическая мишень
https://doi.org/10.20538/1682-0363-2024-3-155-162
Аннотация
Целью работы является рассмотрение использования ингибиторов галектина-1 и галектина-3 как потенциальных лекарственных средств противоопухолевой и антифибротической терапии.
Лекция разработана на основе анализа экспериментальных и обзорных статей, представленных в базе данных PubMed. Дана краткая характеристика строения галектинов, представлены их общепринятая классификация и особенности структурной организации углевод-распознающего домена галектина-1 и галектина-3. В основной части лекции описаны результаты исследований по разработке молекул-ингибиторов углеводной (производные или аналоги β-галактозида) и неуглеводной (на основе пептидов, производные карбоксамида) структуры, способных взаимодействовать с галектином-1 и галектином-3.
Результаты экспериментов, выполненных на лабораторных животных и культурах опухолевых клеток, демонстрируют, что противоопухолевое действие антагонистов галектинов реализуется через подавление пролиферации, метастазирования, активацию апоптоза опухолевых клеток и модуляцию противоопухолевого иммунного ответа. Антагонисты галектина-1 и галектина-3 потенцируют действие противоопухолевых лекарственных средств и оказывают антифибротический эффект. Ряд рассмотренных соединений проходит фазу клинических исследований. Представленные в лекции данные открывают возможности для разработки и синтеза новых молекул – потенциальных ингибиторов галектина-1 и галектина -3.
Ключевые слова
Об авторах
В. А. СеребряковаРоссия
Серебрякова Валентина Александровна – д-р мед. наук, доцент, профессор кафедры фармакологии
О. Е. Ваизова
Россия
Ваизова Ольга Евгеньевна – д-р мед. наук, профессор, профессор кафедры фармакологии
Е. Л. Головина
Россия
Головина Евгения Леонидовна – канд. мед. наук, доцент кафедры фармакологии
В. В. Кочубей
Россия
Кочубей Вероника Владимировна – студентка, педиатрический факультет,
Список литературы
1. Kandel S., Adhikary P., Li G., Cheng K. The TIM3/Gal9 signaling pathway: An emerging target for cancer immunotherapy. Cancer Lett. 2021;510:67–78. DOI: 10.1016/j.canlet.2021.04.011.
2. Laderach D.J., Compagno D. Unraveling how tumor-derived galectins contribute to anti-cancer immunity failure. Cancers (Basel). 2021;13(18):4529. DOI: 10.3390/cancers13184529.
3. Hattori T. Galectins: their network and roles in infection/immunity/tumor growth control 2021. Biomolecules. 2022;12(9):1255. DOI: 10.3390/biom12091255.
4. Mariño K.V., Cagnoni A.J., Croci D.O., Rabinovich G.A. Targeting galectin-driven regulatory circuits in cancer and fibrosis. Nat. Rev. Drug. Discov. 2023;22(4):295–316. DOI: 10.1038/ s41573-023-00636-2.
5. Zhang H., Wang X., Wan Y., Liu L., Zhou J., Li P. et al. Discovery of N-arylsulfonyl-indole-2-carboxamide derivatives as galectin-3 and galectin-8 C-terminal domain inhibitors. ACS Med. Chem. Lett. 2023;14(9):1257–1265. DOI: 10.1021/acsmedchemlett.3c00261.
6. Vrbata D., Filipová M., Tavares M.R., Červený J., Vlachová M., Šírová M. et al. Glycopolymers decorated with 3-O-Substituted thiodigalactosides as potent multivalent inhibitors of galectin-3. J. Med. Chem. 2022;65(5):3866–3878. DOI: 10.1021/acs.jmedchem.1c01625.
7. Elliott W.Jr., Tsung A.J., Guda M.R., Velpula K.K. Galectin inhibitors and nanoparticles as a novel therapeutic strategy for glioblastoma multiforme. Am. J. Cancer. Res. 2024;14(2):774–795. DOI: 10.62347/MKIV1986.
8. Thijssen V.L., Rabinovich G.A., Griffioen A.W. Vascular galectins: regulators of tumor progression and targets for cancer therapy. Cytokine Growth Factor Rev. 2013;24(6):547– 558. DOI: 10.1016/j.cytogfr.2013.07.003.
9. Cerliani J.P., Dalotto-Moreno T., Compagno D., Dergan-Dylon L.S., Laderach D.J., Gentilini L. et al. Study of galectins in tumor immunity: strategies and methods. Methods Mol. Biol. 2015; 1207: 249–268. DOI: 10.1007/978-1-4939-1396-1_16.
10. Elola M.T., Ferragut F., Méndez-Huergo S.P., Croci D.O., Bracalente C., Rabinovich G.A. Galectins: Multitask signaling molecules linking fibroblast, endothelial and immune cell programs in the tumor microenvironment. Cell. Immunol. 2018;333:34–45. DOI: 10.1016/j.cellimm.2018.03.008.
11. Li J., Pan Y., Yang J., Wang J., Jiang Q., Dou H. et al. Tumor necrosis factor-α-primed mesenchymal stem cell-derived exosomes promote M2 macrophage polarization via Galectin-1 and modify intrauterine adhesion on a novel murine model. Front. Immunol. 2022;13:945234. DOI: 10.3389/fimmu.2022.945234.
12. Blanda V., Bracale U.M., Di Taranto M.D., Fortunato G. Galectin-3 in cardiovascular diseases. Int. J. Mol. Sci. 2020;21(23):9232. DOI: 10.3390/ijms21239232.
13. Hirani N., MacKinnon A.C., Nicol L., Ford P., Schambye H., Pedersen A. et al. Target inhibition of galectin-3 by inhaled TD139 in patients with idiopathic pulmonary fibrosis. Eur. Respir. J. 2021;57(5):2002559. DOI: 10.1183/13993003.025592020.
14. Mathur T., Singh I. Novel approaches for the treatment of pulmonary fibrosis with emphasis on the role of galectin-3 inhibitors as a potential therapeutic approach. Curr. Drug. Res. Rev. 2023. DOI: 10.2174/0125899775269970231218100959.
15. Sherpa M.D., Sonkawade S.D., Jonnala V., Pokharel S., Khazaeli M., Yatsynovich Y. et al. Galectin-3 is associated with cardiac fibrosis and an increased risk of sudden death. Cells. 2023;12(9):1218. DOI: 10.3390/cells12091218.
16. Hermenean A., Oatis D., Herman H., Ciceu A., D’Amico G., Trotta M.C. Galectin 1-A key player between tissue repair and fibrosis. Int. J. Mol. Sci. 2022;23(10):5548. DOI: 10.3390/ijms23105548.
17. Zetterberg F.R., MacKinnon A., Brimert T., Gravelle L., Johnsson R.E., Kahl-Knutson B. et al. Discovery and optimization of the first highly effective and orally available galectin-3 inhibitors for treatment of fibrotic disease. J. Med. Chem. 2022;65(19):12626–12638. DOI: 10.1021/acs.jmedchem.2c00660.
18. Dimitrijevic Stojanovic M., Stojanovic B., Radosavljevic I., Kovacevic V., Jovanovic I., Stojanovic B.S. et al. Galectin-3’s complex interactions in pancreatic ductal adenocarcinoma: from cellular signaling to therapeutic potential. Biomolecules. 2023;13(10):1500. DOI: 10.3390/biom13101500.
19. Liu F.T., Stowell S.R. The role of galectins in immunity and infection. Nat. Rev. Immunol. 2023;23(8):479–494. DOI: 10.1038/s41577-022-00829-7.
20. Pinho S.S., Alves I., Gaifem J., Rabinovich G.A. Immune regulatory networks coordinated by glycans and glycan-binding proteins in autoimmunity and infection. Cell. Mol. Immunol. 2023;20(10):1101–1113. DOI: 10.1038/s41423-023-01074-1.
21. Cedeno-Laurent F., Dimitroff C.J. Galectins and their ligands: negative regulators of anti-tumor immunity. Glycoconj. J. 2012;29(8–9):619–25. DOI: 10.1007/s10719-012-9379-0.
22. Vuong L., Kouverianou E., Rooney C.M., McHugh B.J., Howie S.E.M., Gregory C.D. et al. An orally active galectin-3 antagonist inhibits lung adenocarcinoma growth and augments response to PD-L1 blockade. Cancer Res. 2019;79(7):1480– 1492. DOI: 10.1158/0008-5472.CAN-18-2244.
23. Goud N.S., Bhattacharya A. Human galectin-1 in multiple cancers: a privileged molecular target in oncology. Mini Rev. Med. Chem. 2021;21(15):2169–2186. DOI: 10.2174/1389557 521666210217093815.
24. Fei F., Zhang M., Tarighat S.S., Joo E.J., Yang L., Heisterkamp N. Galectin-1 and galectin-3 in B-cell precursor acute lymphoblastic leukemia. Int. J. Mol. Sci. 2022;23(22):14359. DOI: 10.3390/ijms232214359.
25. Pasmatzi E., Papadionysiou C., Monastirli A., Badavanis G., Tsambaos D. Galectin 1 in dermatology: current knowledge and perspectives. Acta. Dermatovenerol. Alp. Pannonica. Adriat. 2019;28(1):27–31. DOI: 10.15570/actaapa.2019.6
26. Porciúncula-González C., Cagnoni A.J., Fontana C., Mariño K.V., Saenz-Méndez P., Giacomini C. et al. Structural insights in galectin-1-glycan recognition: Relevance of the glycosidic linkage and the N-acetylation pattern of sugar moieties. Bioorg. Med. Chem. 2021;44:116309. DOI: 10.1016/j.bmc.2021.116309.
27. Massaro M., Cagnoni A.J., Medrano F.J., Pérez-Sáez J.M., Abdullayev S., Belkhadem K. et al. Selective modifications of lactose and N-acetyllactosamine with sulfate and aromatic bulky groups unveil unique structural insights in galectin-1-ligand recognition. Bioorg. Med. Chem. 2023;94:117480. DOI: 10.1016/j.bmc.2023.117480.
28. Marchiori M.F., Souto D.E., Bortot L.O., Pereira J.F., Kubota L.T., Cummings R.D. et al. Synthetic 1,2,3-triazole-linked glycoconjugates bind with high affinity to human galectin-3. Bioorg. Med. Chem. 2015;23(13):3414–3425. DOI: 10.1016/j.bmc.2015.04.044.
29. Campo V.L., Marchiori M.F., Rodriguez L.C., Dias-Baruffi M. Synthetic glycoconjugate inhibitors of tumor galectin-3: updated information. Glycoconj. J. 2016;33(6):853–876. DOI: 10.1007/s10719-016-9721-z
30. Stegmayr J., Zetterberg F., Carlsson M.C., Huang X., Sharma G., Kahl-Knutson B. et al. Extracellular and intracellular small-molecule galectin-3 inhibitors. Sci. Rep. 2019;9(1):2186. DOI: 10.1038/s41598-019-38497-8.
31. Koonce N.A., Griffin R.J., Dings R.P.M. Galectin-1 inhibitor OTX008 induces tumor vessel normalization and tumor growth inhibition in human head and neck squamous cell carcinoma models. Int. J. Mol. Sci. 2017;18(12):2671. DOI: 10.3390/ijms18122671.
32. Dings R.P.M., Miller M.C., Griffin R.J., Mayo K.H. Galectins as molecular targets for therapeutic intervention. Int. J. Mol. Sci. 2018;19(3):905. DOI: 10.3390/ijms19030905.
33. Martin-Saldaña S., Chevalier M.T., Pandit A. Therapeutic potential of targeting galectins – A biomaterials-focused perspective. Biomaterials. 2022;286:121585. DOI: 10.1016/j.biomaterials.2022.121585.
34. Salameh B.A., Leffler H., Nilsson U.J. 3-(1,2,3-Triazol-1yl)-1-thio-galactosides as small, efficient, and hydrolytically stable inhibitors of galectin-3. Bioorg. Med. Chem. Lett. 2005;15(14):3344–3346. DOI: 10.1016/j.bmcl.2005.05.084.
35. Zetterberg F.R., Peterson K., Johnsson R.E., Brimert T., Håkansson M., Logan D.T. et al. Monosaccharide derivatives with low-nanomolar lectin affinity and high selectivity based on combined fluorine-amide, phenyl-arginine, sulfur-π, and halogen bond interactions. Chem. Med. Chem. 2018;13(2):133–137. DOI: 10.1002/cmdc.201700744.
36. Ito K., Scott S.A., Cutler S., Dong L.F., Neuzil J., Blanchard H. et al. Thiodigalactoside inhibits murine cancers by concurrently blocking effects of galectin-1 on immune dysregulation, angiogenesis and protection against oxidative stress. Angiogenesis. 2011;14(3):293–307. DOI: 10.1007/s10456-011-9213-5.
37. Peterson K., Kumar R., Stenström O., Verma P., Verma P.R., Håkansson M. et al. Systematic tuning of fluoro-galectin-3 interactions provides thiodigalactoside derivatives with single-digit nM affinity and high selectivity. J. Med. Chem. 2018;61(3):1164–1175. DOI: 10.1021/acs.jmedchem.7b01626.
38. Hőgye F., Farkas L.B., Balogh Á.K., Szilágyi L., Alnukari S., Bajza I. et al. Saturation transfer difference NMR and molecular docking interaction study of aralkyl-thiodigalactosides as potential inhibitors of the human-galectin-3 protein. Int. J. Mol. Sci. 2024;25(3):1742. DOI: 10.3390/ijms25031742.
39. Salameh B.A., Cumpstey I., Sundin A., Leffler H., Nilsson U.J. 1H-1,2,3-triazol-1-yl thiodigalactoside derivatives as high affinity galectin-3 inhibitors. Bioorg. Med. Chem. 2010;18(14): 5367–5378. DOI: 10.1016/j.bmc.2010.05.040.
40. Vašíček T., Spiwok V., Červený J., Petrásková L., Bumba L., Vrbata D. et al. Regioselective 3-O-substitution of unprotected thiodigalactosides: direct route to galectin inhibitors. Chemistry. 2020;26(43):9620–9631. DOI: 10.1002/chem.202002084.
41. Zetterberg F.R., Diehl C., Håkansson M., Kahl-Knutson B., Leffler H., Nilsson U.J. et al. Discovery of selective and orally available galectin-1 inhibitors. J. Med. Chem. 2023;66(24):16980–16990. DOI: 10.1021/acs.jmedchem.3c01787.
42. Rajput V.K., MacKinnon A., Mandal S., Collins P., Blanchard H., Leffler H. et al. A selective galactose-coumarin-derived galectin-3 inhibitor demonstrates involvement of galectin-3-glycan interactions in a pulmonary fibrosis model. J. Med. Chem. 2016;59(17):8141–8147. DOI: 10.1021/acs.jmedchem.6b00957.
43. Filipová M., Bojarová P., Rodrigues Tavares M., Bumba L., Elling L., Chytil P. et al. Glycopolymers for efficient inhibition of galectin-3: in vitro proof of efficacy using suppression of TlLymphocyte apoptosis and tumor cell migration. Biomacromolecules. 2020;21(8):3122–3133. DOI: 10.1021/acs.biomac.0c00515.
44. Ou C., Li C., Feng C., Tong X., Vasta G.R., Wang L.X. Synthesis, binding affinity, and inhibitory capacity of cyclodextrin-based multivalent glycan ligands for human galectin-3. Bioorg. Med. Chem. 2022 72:116974. DOI: 10.1016/j.bmc.2022.116974.
45. Tavares M.R., Bláhová M., Sedláková L., Elling L., Pelantová H., Konefał R. et al. High-affinity N-(2-Hydroxypropyl)methacrylamide copolymers with tailored N-acetyllactosamine presentation discriminate between galectins. Biomacromolecules. 2020;21(2):641–652. DOI: 10.1021/acs.biomac.9b01370.
46. Raics M., Balogh Á.K., Kishor C., Timári I., Medrano F.J., Romero A. et al. Investigation of the molecular details of the interactions of selenoglycosides and human galectin-3. Int. J. Mol. Sci. 2022;23(5):2494. DOI: 10.3390/ijms23052494.
47. Ruvolo P.P., Ruvolo V.R., Benton C.B., AlRawi A., Burks J.K., Schober W. et al. Combination of galectin inhibitor GCS-100 and BH3 mimetics eliminates both p53 wild type and p53 null AML cells. Biochim. Biophys. Acta. 2016;1863(4):562–571. DOI: 10.1016/j.bbamcr.2015.12.008.
48. Wang Y., Nangia-Makker P., Balan V., Hogan V., Raz A. Calpain activation through galectin-3 inhibition sensitizes prostate cancer cells to cisplatin treatment. Cell. Death. Dis. 2010;1(11):e101. DOI: 10.1038/cddis.2010.79.
49. Sturgill E.R., Rolig A.S., Linch S.N., Mick C., Kasiewicz M.J., Sun Z. et al. Galectin-3 inhibition with belapectin combined with anti-OX40 therapy reprograms the tumor microenvironment to favor anti-tumor immunity. Oncoimmunology. 2021;10(1):1892265. DOI: 10.1080/2162402X.2021.1892265.
50. Curti B.D., Koguchi Y., Leidner R.S., Rolig A.S., Sturgill E.R., Sun Z. et al. Enhancing clinical and immunological effects of anti-PD-1 with belapectin, a galectin-3 inhibitor. J. Immunother. Cancer. 2021;9(4):e002371. DOI: 10.1136/jitc-2021002371.
51. Paz H., Joo E.J., Chou C.H., Fei F., Mayo K.H., Abdel-Azim H. et al. Treatment of B-cell precursor acute lymphoblastic leukemia with the Galectin-1 inhibitor PTX008. J. Exp. Clin. Cancer. Res. 2018;37(1):67. DOI: 10.1186/s13046-018-0721-7.
52. Leung Z., Ko F.C.F., Tey S.K., Kwong E.M.L., Mao X., Liu B.H.M. et al. Galectin-1 promotes hepatocellular carcinoma and the combined therapeutic effect of OTX008 galectin-1 inhibitor and sorafenib in tumor cells. J. Exp. Clin. Cancer. Res. 2019;38(1):423. DOI: 10.1186/s13046-019-1402-x.
Рецензия
Для цитирования:
Серебрякова В.А., Ваизова О.Е., Головина Е.Л., Кочубей В.В. Галектины: потенциальная фармакологическая мишень. Бюллетень сибирской медицины. 2024;23(3):155-162. https://doi.org/10.20538/1682-0363-2024-3-155-162
For citation:
Serebryakova V.A., Vaizova O.E., Golovina E.L., Kochubey V.V. Galectins: a potential pharmacological target. Bulletin of Siberian Medicine. 2024;23(3):155-162. https://doi.org/10.20538/1682-0363-2024-3-155-162