Preview

Bulletin of Siberian Medicine

Advanced search

A new approach to assessing the efficacy of anthelmintic agents in vitro

https://doi.org/10.20538/1682-0363-2024-4-111-119

Abstract

Aim. To develop a new method to determine the viability of Opisthorchis felineus in vitro using the MTS reagent and to evaluate its applicability for analyzing the efficacy of anthelmintic agents in the treatment of opisthorchiasis.

Materials and methods. Golden hamsters were used to create a model of O. felineus infection. The animals were infected with metacercariae obtained from fish of the Cyprinidae family. Three months after infection, adult parasites were extracted from the hepatobiliary system. Their viability was assessed using the motility scale and a new method based on the modified MTS test protocol. To account for differences between the size and number of adult parasite cells, the results were normalized with respect to protein content. To evaluate the feasibility of the new approach in the study of pharmacological activity against opisthorchiasis, the viability of adult parasites in the presence of praziquantel was tested.

Results. During incubation of adult flukes in a medium with the addition of the MTS reagent, colored watersoluble formazan was accumulated. Thermal inactivation of parasites significantly decreased the production of this compound. Since the studied adult parasites differed in size and number of cells, the obtained data on their viability were normalized to protein content. The results correlated with the data on parasite viability obtained by the traditional method using the motility scale. Evaluation of praziquantel efficacy at different concentrations using two independent methods (the MTS test and the motility scale) showed that the results of the MTS test were consistent with literature data and comparable with the results obtained using the motility scale.

Conclusion. A new method for in vitro evaluation of anti-opisthorchiasis activity of drugs was developed. It is based on the assessment of water-soluble formazan production by adult O. felineus flukes in the culture medium using the MTS reagent for screening anti-opisthorchiasis activity of new anthelmintic drugs.

About the Authors

E. A. Perina
Siberian State Medical University
Russian Federation

2, Mosсow Trakt, Tomsk, Tomsk, 634050



E. E. Buyko
Siberian State Medical University
Russian Federation

2, Mosсow Trakt, Tomsk, Tomsk, 634050



I. P. Kaminskiy
Siberian State Medical University
Russian Federation

2, Mosсow Trakt, Tomsk, Tomsk, 634050



D. S. Sobakin
Siberian State Medical University
Russian Federation

2, Mosсow Trakt, Tomsk, Tomsk, 634050



A. A. Ufandeev
Siberian State Medical University
Russian Federation

2, Mosсow Trakt, Tomsk, Tomsk, 634050



O. A. Kaidash
Siberian State Medical University
Russian Federation

2, Mosсow Trakt, Tomsk, Tomsk, 634050



V. V. Ivanov
Siberian State Medical University
Russian Federation

2, Mosсow Trakt, Tomsk, Tomsk, 634050



E. V. Udut
Siberian State Medical University
Russian Federation

2, Mosсow Trakt, Tomsk, Tomsk, 634050



References

1. Pakharukova M.Y., Mordvinov V.A. The liver fluke Opisthorchis felineus: biology, epidemiology and carcinogenic potential. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2016;110(1):28–36. DOI: 10.1093/trstmh/trv085.

2. Fedorova O.S., Kovshirina A.E., Kovshirina Y.V., Hattendorf J., Onishchenko S.V., Katanakhova L.L. et al. Opisthorchis felineus infection is a risk factor for cholangiocarcinoma in Western Siberia: A hospital-based case-control study. Clinical Infectious Diseases. 2023;7(3):e1392–e1398. DOI: 10.1093/cid/ciac497.

3. Khalil R.G., Ibrahim A.M., Bakery H.H. Juglone: “A novel immunomodulatory, antifibrotic, and schistosomicidal agent to ameliorate liver damage in murine schistosomiasis mansoni”. International Immunopharmacology. 2022;113:109415. DOI: 10.1016/j.intimp.2022.109415.

4. Pakharukova M.Y., Samsonov V.A., Serbina E.A., Mordvinov, V.A. A study of tribendimidine effects in vitro and in vivo on the liver fluke Opisthorchis felineus. Parasites Vectors. 2019;12(23):1–6. DOI: 10.1186/s13071-019-3288-z.

5. Harder A. Activation of transient receptor potential channel Sm. (Schistosoma mansoni) TRPM PZQ by PZQ, enhanced Ca++ influx, spastic paralysis, and tegumental disrupture-the deadly cascade in parasitic schistosomes, other trematodes, and cestodes. Parasitology Research. 2020;119:2371–2382. DOI: 10.1007/s00436-020-06763-8.

6. Spangenberg T. Alternatives to praziquantel for the prevention and control of schistosomiasis. ACS Infectious Diseases. 2020;7(5):939–942. DOI: 10.1021/acsinfecdis.0c00542.

7. Detoni M.B., Bortoleti B.T.D.S., Tomiotto-Pellissier F., Concato V.M., Gonçalves M.D., Silva T.F. et al. Biogenic silver nanoparticle exhibits schistosomicidal activity in vitro and reduces the parasitic burden in experimental Schistosomiasis mansoni. Microbes and Infection.2023;25(7):105145. DOI: 10.1016/j.micinf.2023.105145.

8. Rehman L., Ullah R., Rehman A., Khan M.A.H., Beg M.A., Wasim S. et al. Clinostomum complanatum: Anthelmintic potential of curcumin on the infective progenetic metacercarial stage. Experimental Parasitology. 2023;249:108514. DOI: 10.1016/j.exppara.2023.108514.

9. Aslantürk Ö.S. In vitro cytotoxicity and cell viability assays: principles, advantages, and disadvantages. Genotoxicity-A Predictable Risk to Our Actual World. 2018;64–80. DOI: 10.5772/intechopen.71923.

10. Mourão M.M., Dinguirard N., Franco G.R., Yoshino T.P. Role of the endogenous antioxidant system in the protection of Schistosoma mansoni primary sporocysts against exogenous oxidative stress. PLoS Neglected Tropical Diseases. 2009;3(11):e550. DOI: 10.1371/journal.pntd.0000550.

11. Moné Y., Mitta G., Duval D., Gourbal B.E. E Effect of amphotericin B on the infection success of Schistosoma mansoni in Biomphalaria glabrata. Experimental Parasitology. 2019;125(2):70–75. DOI: 10.1016/j.exppara.2009.12.024.

12. De Paula R.G., de Magalhães Ornelas A.M., Morais E.R., de Souza Gomes M., de Paula Aguiar D. et al. Proteasome stress responses in Schistosoma mansoni. Parasitology Research. 2015;114:1747–1760. DOI: 10.1007/s00436-015-4360-z.

13. Миронов А.Н., Бунатян Н.Д., Васильев А.Н. Руководство по проведению доклинических исследований лекарственных средств. М.: Гриф и К., 2012:944.

14. Pakharukova M.Y., Shilov A.G., Pirozhkova D.S., Katokhin A.V., Mordvinov V.A. The first comprehensive study of praziquantel effects in vivo and in vitro on European liver fluke Opisthorchis felineus (Trematoda). International Journal of Antimicrobial Agents. 2015;46(1):94–100. DOI: 10.1016/j.ijantimicag.2015.02.012.

15. Wong Y., Pearson M.S., Fedorova O., Ivanov V., Khmelevskaya E., Tedla B. et al. Secreted and surface proteome and transcriptome of Opisthorchis felineus. Frontiers in Parasitology. 2023;1195457. DOI: 10.3389/fpara.2023.1195457.

16. Olson B.J., Markwell J. Assays for determination of protein concentration. Current Protocols in Pharmacology. 2007;38(1):A–3A. DOI: 10.1002/0471140864.ps0304s48.

17. Marcos L., Maco V., Terashima A. Triclabendazole for the treatment of human fascioliasis and the threat of treatment failures. Expert Review of Anti-Infective Therapy. 2021;19(7):817–823.

18. Olliaro P., Delgado-Romero P., Keiser J. The little we know about the pharmacokinetics and pharmacodynamics of praziquantel (racemate and R-enantiomer). Journal of Antimicrobial Chemotherapy. 2014;69(4):863–870. DOI: 10.1093/jac/dkt491.

19. Oliveira M.F., d’Avila J.C., Tempone A.J., Soares J.B., Rumjanek F.D., Ferreira-Pereira A. et al. Inhibition of heme aggregation by chloroquine reduces Schistosoma mansoni infection. Journal of Infectious Diseases. 2004;190(4):843–852. DOI: 10.1086/422759.

20. Ghasemi M., Turnbull T., Sebastian S., Kempson I. The MTT assay: utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. International Journal of Molecular Sciences. 2021;22(23):12827. DOI: 10.3390/ijms222312827.

21. Stockert J.C., Horobin R.W., Colombo L.L., Blázquez-Castro A. Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochemica. 2018;120(3):159–167. DOI: 10.1016/j.acthis.2018.02.005.

22. Stone V., Johnston H., Schins R.P. Development of in vitro systems for nanotoxicology: methodological considerations. Critical Reviews in Toxicology. 2009;39(7):613–626. DOI: 10.1080/10408440903120975.

23. Keiser J., Manneck T., Vargas M. Interactions of mefloquine with praziquantel in the Schistosoma mansoni mouse model and in vitro. Journal of Antimicrobial Chemotherapy. 2011;66(8):1791–1797. DOI: 10.1093/jac/dkr178.


Review

For citations:


Perina E.A., Buyko E.E., Kaminskiy I.P., Sobakin D.S., Ufandeev A.A., Kaidash O.A., Ivanov V.V., Udut E.V. A new approach to assessing the efficacy of anthelmintic agents in vitro. Bulletin of Siberian Medicine. 2024;23(4):111-119. https://doi.org/10.20538/1682-0363-2024-4-111-119

Views: 165


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)