Preview

Бюллетень сибирской медицины

Расширенный поиск

Радионуклидная визуализация GRPR при злокачественной патологии молочной и предстательной желез: опыт клинического применения

https://doi.org/10.20538/1682-0363-2025-1-164-172

Аннотация

В лекции представлены актуальные клинические исследования относительно таргетной радионуклидной визуализации опухолей молочной и предстательной желез с гиперэкспрессией рецептора гастрин-высвобождающего пептида (GRPR). Рецептор GRPR представляет собой трансмембранный рецептор, активация которого способствует росту и пролиферации опухолевых клеток. Наиболее высокий уровень экспрессии GRPR наблюдается при таких злокачественных патологиях, как рак молочной и предстательной желез, что представляет особый интерес для радионуклидной диагностики.
В проведенных клинических исследованиях оценивались безопасность, фармакологические свойства, эффективность визуализации радиофармпрепаратов на основе пептидов-агонистов и антагонистов GRPR, меченных радионуклидами технецием-99m и галлием-68. Результаты испытаний наглядно демонстрируют преимущество антагонистов GRPR перед агонистами GRPR, поскольку обладают оптимальными фармакологическими свойствами, хорошей переносимостью, быстрым выведением органами с физиологическим уровнем экспрессии рецептора, высокой эффективностью визуализации опухолей молочной и предстательной желез с гиперэкспрессией GRPR. 

Об авторах

О. Д. Брагина
Научно-исследовательский институт (НИИ) онкологии, Томский национальный исследовательский медицинский центр (НИМЦ) Российской академии наук; Национальный исследовательский Томский политехнический университет (НИ ТПУ)
Россия

Брагина Ольга Дмитриевна – д-р мед. наук, врач-онколог, вед. науч. сотрудник, отделение радионуклидной терапии и диагностики; ст. науч. сотрудник 

634009, г. Томск, пер. Кооперативный, 5;
634050, Томск, пр. Ленина, 30


Конфликт интересов:

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.



А. Г. Иванова
Научно-исследовательский институт (НИИ) онкологии, Томский национальный исследовательский медицинский центр (НИМЦ) Российской академии наук; Сибирский государственный медицинский университет (СибГМУ)
Россия

Иванова Анастасия Григорьевна – врач-ординатор 

634009, г. Томск, пер. Кооперативный, 5;
634050, Томск, Московский тракт, 2


Конфликт интересов:

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.



Е. А. Усынин
Научно-исследовательский институт (НИИ) онкологии, Томский национальный исследовательский медицинский центр (НИМЦ) Российской академии наук
Россия

Усынин Евгений Анатольевич – д-р мед. наук, зав. отделением общей онкологии 

634009, г. Томск, пер. Кооперативный, 5


Конфликт интересов:

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.



Список литературы

1. Siegel R.L., Miller K.D., Fuchs H.E., Jemal A. Cancer statistics. CA Cancer J. Clin. 2022;72(1):7–33. DOI: 10.3322/caac.21708.

2. Jensen R.T., Battey J.F., Spindel E.R., Benya R.V. International union of pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacological Reviews. 2008;60(1):1–42. DOI: 10.1124/pr.107.07108.

3. Hohla F., Schally A.V. Targeting gastrin releasing peptide receptors: new options for the therapy and diagnosis of cancer. Cell Cycle. 2010;9(9):1738–1741. DOI: 10.4161/cc.9.9.11347.

4. D’Onofrio A., Engelbrecht S., Läppchen T., Rominger A., Gourni E. GRPR-targeting radiotheranostics for breast cancer management. Frontiers in Medicine. 2023;10:1250799. DOI: 10.3389/fmed.2023.1250799.

5. Liu X., Carlisle D.L., Swick M.C., Gaither-Davis A., Grandis J.R., Siegfried J.M. Gastrin-releasing peptide activates Akt through the epidermal growth factor receptor pathway and abrogates the effect of gefitinib. Experimental. Cell Research. 2007;313(7):1361–1372. DOI: 10.1016/j.yexcr.2007.01.016.

6. Thomas S.M., Grandis J.R., Wentzel A.L., Gooding W.E., Lui V.W., Siegfried J.M. Gastrin-releasing peptide receptor mediates activation of the epidermal growth factor receptor in lung cancer cells. Neoplasia. 2005;7(4):426–431. DOI: 10.1593/neo.04454.

7. Lui V.W., Thomas S.M., Zhang Q., Wentzel A.L., Siegfried J.M., Li J.Y. et al. Mitogenic effects of gastrin-releasing peptide in head and neck squamous cancer cells are mediated by activation of the epidermal growth factor receptor. Oncogene. 2003;22(40):6183–6193. DOI: 10.1038/sj.onc.1206720.

8. Nagasaki S., Nakamura Y., Maekawa T., Akahira J., Miki Y., Suzuki T. et al. Immunohistochemical analysis of gastrin-releasing peptide receptor (GRPR) and possible regulation by estrogen receptor βcx in human prostate carcinoma. Neoplasma. 2012;59(2):224–232. DOI: 10.4149/neo_2012_029.

9. Halmos G., Wittliff J.L., Schally A.V. Characterization of bombesin/gastrin-releasing peptide receptors in human breast cancer and their relationship to steroid receptor expression. Cancer Research. 1995;55(2):280–287.

10. Cornelio D.B., Roesler R., Schwartsmann G. Gastrin-releasing peptide receptor as a molecular target in experimental anticancer therapy. Annals of Oncology. 2007;18(9):1457–1466. DOI: 10.1093/annonc/mdm058.

11. Dalm S.U., Martens J.W.M., Sieuwerts A.M., van Deurzen C.H.M., Koelewijn S.J., de Blois E. et al. In vitro and in vivo application of radiolabeled gastrin-releasing peptide receptor ligands in breast cancer. Journal of Nuclear Medicine. 2015;56(5):752–757. DOI: 10.2967/jnumed.114.153023.

12. Morgat C., MacGrogan G., Brouste V., Vélasco V., Sévenet N., Bonnefoi H. et al. Expression of gastrin-releasing peptide receptor in breast cancer and its association with pathologic, biologic, and clinical parameters: a study of 1,432 primary tumors. Journal of Nuclear Medicine. 2017;58(9):1401–1407. DOI: 10.2967/jnumed.116.188011.

13. Ozawa H. Principles and basics of immunohistochemistry. Folia Pharmacologica Japonica. 2019;154(4):156–164. DOI: 10.1254/fpj.154.156.

14. Брагина О.Д., Чернов В.И., Гарбуков Е.Ю., Дорошенко А.В., Воробьева А.Г., Орлова А.М. и др. Возможности радионуклидной диагностики HER2-позитивного рака молочной железы с использованием меченных технецием-99m таргетных молекул: первый опыт клинического применения. Бюллетень сибирской медицины. 2021;20(1):23–30. DOI: 10.20538/1682-0363-2021-1-23-30.

15. Брагина О.Д., Деев С.М., Чернов В.И., Толмачев В.М. Эволюция таргетной радионуклидной диагностики HER2-позитивного рака молочной железы. Acta Naturae. 2022;14(2):4–15. DOI: 10.32607/actanaturae.11611.

16. Толмачев В.М., Чернов В.И., Деев С.М. Таргетная ядерная медицина. Найти и уничтожить. Успехи химии. 2022;91(3):RCR5034. DOI: 10.1070/RCR5034.

17. Bragina O.D., Tashireva L.A, Loos D.M., Chernov V.I., Hober S., Tolmachev V.M. Evaluation of approaches for the assessment of HER2 expression in breast cancer by radionuclide imaging using the scaffold protein [99mTc]Tc-ADAPT6. Pharmaceutics. 2024;16(4):445. DOI: 10.3390/pharmaceutics16040445.

18. Bragina O., Chernov V., Schulga A., Konovalova E., Hober S., Deyev S. et al. Direct intra-patient comparison of scaffold protein-based tracers, [99mTc]Tc-ADAPT6 and [99mTc]Tc-(HE)3-G3, for imaging of HER2-positive breast cancer. Cancers. 2023;15(12):3149. DOI: 10.3390/cancers15123149.

19. Li X., Cai H., Wu X., Li L., Wu H., Tian R. New frontiers in molecular imaging using peptide-based radiopharmaceuticals for prostate cancer. Frontiers in Chemistry. 2020;8. DOI: 10.3389/fchem.2020.583309.

20. Mansi R., Nock B.A., Dalm S.U., Busstra M.B., van Weerden W.M., Maina T. Radiolabeled bombesin analogs. Cancers. 2021;13(22):5766. DOI: 10.3390/cancers13225766.

21. Van de Wiele C., Dumont F., Vanden Broecke R., Oosterlinck W., Cocquyt V., Serreyn R. et al. Technetium-99m RP527, a GRP analogue for visualisation of GRP receptor-expressing malignancies: a feasibility study. European Journal of Nuclear Medicine. 2000;27(11):1694–1699. DOI: 10.1007/s002590000355.

22. Scopinaro F., De Vincentis G., Varvarigou A.D., Laurenti C., Iori F., Remediani S. et al. 99mTc-bombesin detects prostate cancer and invasion of pelvic lymph nodes. European Journal of Nuclear Medicine and Molecular Imaging. 2003;30(10):1378–1382. DOI: 10.1007/s00259-003-1261-7.

23. Nock B.A., Nikolopoulou A., Galanis A., Cordopatis P., Waser B., Reubi J.-C. et al. Potent bombesin-like peptides for GRP-receptor targeting of tumors with 99mTc: a preclinical study. Journal of Medicinal Chemistry. 2004;48(1):100–110. DOI: 10.1021/jm049437y.

24. Mather S.J., Nock B.A., Maina T., Gibson V., Ellison D., Murray I. et al. GRP receptor imaging of prostate cancer using [99mTc]Demobesin 4: a first-in-man study. Molecular Imaging and Biology. 2014;16(6):888–895. DOI: 10.1007/s11307-014-0754-z.

25. Baum R.P., Prasad V., Mutloka N., Frischknecht M., Maecke H.R., Reubi J.C. Molecular imaging of bombesin receptors in various tumors by Ga-68 AMBA PET/CT: First results. The Journal of Nuclear Medicine. 2007;48.

26. Cescato R., Maina T., Nock B., Nikolopoulou A., Charalambidis D., Piccand V. et al. Bombesin receptor antagonists may be preferable to agonists for tumor targeting. Journal of Nuclear Medicine. 2008;49(2):318–326. DOI: 10.2967/jnumed.107.045054.

27. Maina T., Bergsma H., Kulkarni H.R., Mueller D., Charalambidis D., Krenning E.P. et al. Preclinical and first clinical experience with the gastrin-releasing peptide receptor-antagonist [68Ga]SB3 and PET/CT. European Journal of Nuclear Medicine and Molecular Imaging. 2015;43(5):964–973. DOI: 10.1007/s00259-015-3232-1.

28. Minamimoto R., Sonni I., Hancock S., Vasanawala S., Loening A., Gambhir S.S. et al. Prospective evaluation of 68GaRM2 PET/MRI in patients with biochemical recurrence of prostate cancer and negative findings on conventional imaging. Journal of Nuclear Medicine. 2017;59(5):803–808. DOI: 10.2967/jnumed.117.197624.

29. Duan H., Baratto L., Fan R.E., Soerensen S.J.C., Liang T., Chung B.I. et al. Correlation of68Ga-RM2 PET with postsurgery histopathology findings in patients with newly diagnosed intermediate- or high-risk prostate cancer. Journal of Nuclear Medicine. 2022;63(12):1829–1835. DOI: 10.2967/jnumed.122.263971.

30. Zhang J., Niu G., Fan X., Lang L., Hou G., Chen L. et al. PET using a GRPR antagonist 68Ga-RM26 in healthy volunteers and prostate cancer patients. Journal of Nuclear Medicine. 2017;59(6):922–928. DOI: 10.2967/jnumed.117.198929.

31. Chernov V., Rybina A., Zelchan R., Medvedeva A., Bragina O., Lushnikova N. et al. Phase I trial of [99mTc]TcmaSSS-PEG2-RM26, a bombesin analogue antagonistic to gastrin-releasing peptide receptors (GRPRs), for SPECT imaging of GRPR expression in malignant tumors. Cancers. 2023;15(6):1631. DOI: 10.3390/cancers15061631.

32. Nock B.A., Kaloudi A., Lymperis E., Giarika A., Kulkarni H.R., Klette I. et al. Theranostic perspectives in prostate cancer with the gastrin-releasing peptide receptor antagonist NeoBOMB1: preclinical and first clinical results. Journal of Nuclear Medicine. 2016;58(1):75–80. DOI: 10.2967/jnumed.116.178889.

33. Djaileb L., Morgat C., van der Veldt A., Virgolini I., Cortes F., Demange A. et al. Preliminary diagnostic performance of [68Ga]-NeoBOMB1 in patients with gastrin-releasing peptide receptor-positive breast, prostate, colorectal or lung tumors (Neofind). Journal of Nuclear Medicine. 2020;61(Suppl. S1):346.

34. Van de Wiele C., Phonteyne P., Pauwels P., Goethals I., Van den Broecke R., Cocquyt V. et al. Gastrin-releasing peptide receptor imaging in human breast carcinoma versus immunohistochemistry. Journal of Nuclear Medicine. 2008;49(2):260–264. DOI: 10.2967/jnumed.107.047167.

35. Scopinaro F., Varvarigou A., Ussof W., De Vincentis G., Archimandritis S., Evangelatos G. et al. Breast cancer takes up 99mTc Bombesin. A preliminary report. Tumori Journal. 2002;88(3):S25–S28. DOI: 10.1177/030089160208800331.

36. Urbano N., Scimeca M., Tancredi V., Bonanno E., Schillaci O. 99mTc-sestamibi breast imaging: current status, new ideas and future perspectives. Seminars in Cancer Biology. 2022;84:302–309. DOI: 10.1016/j.semcancer.2020.01.007.

37. Stoykow C., Erbes T., Maecke H.R., Bulla S., Bartholomä M., Mayer S. et al. Gastrin-releasing peptide receptor imaging in breast cancer using the receptor fntagonist 68Ga-RM2 and PET. Theranostics. 2016;6(10):1641–1650. DOI: 10.7150/thno.14958.

38. Morgat C., Schollhammer R., Macgrogan G., Barthe N., Vélasco V., Vimont D. et al. Comparison of the binding of the gastrin-releasing peptide receptor (GRP-R) antagonist 68Ga-RM2 and 18F-FDG in breast cancer samples. PloS One. 2019;14(1):e0210905. DOI: 10.1371/journal.pone.0210905.

39. Zang J., Mao F., Wang H., Zhang J., Liu Q., Peng L. et al. 68Ga-NOTA-RM26 PET/CT in the evaluation of breast cancer. Clinical Nuclear Medicine. 2018;43(9):663–669. DOI: 10.1097/rlu.0000000000002209.

40. Kanellopoulos P., Mattsson A., Abouzayed A., Obeid K., Nock B A., Tolmachev V. et al. Preclinical evaluation of new GRPR-antagonists with improved metabolic stability for radiotheranostic use in oncology. EJNMMI Radiopharmacy and Chemistry. 2024;9(1). DOI: 10.1186/s41181-024-00242-6.

41. Nock B.A., Kaloudi A., Kanellopoulos P., Janota B., Bromińska B., Iżycki D. et al. [99mTc]Tc-DB15 in GRPR-targeted tumor imaging with SPECT: from preclinical evaluation to the first clinical outcomes. Cancers. 2015;13(20):5093. DOI: 10.3390/cancers13205093.


Рецензия

Для цитирования:


Брагина О.Д., Иванова А.Г., Усынин Е.А. Радионуклидная визуализация GRPR при злокачественной патологии молочной и предстательной желез: опыт клинического применения. Бюллетень сибирской медицины. 2025;24(1):164-172. https://doi.org/10.20538/1682-0363-2025-1-164-172

For citation:


Bragina O.D., Ivanova A.G., Usynin E.A. Radionuclide GRPR imaging in malignant pathology of the mammary and prostate glands: clinical experience. Bulletin of Siberian Medicine. 2025;24(1):164-172. https://doi.org/10.20538/1682-0363-2025-1-164-172

Просмотров: 158


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)