Effect of probiotic strains, L-arginine and carvedilol on myocardial infarction size in systemic inflammation in rats
https://doi.org/10.20538/1682-0363-2025-2-5-13
Abstract
Aim. To determine the cardioprotective effect of a mixture of probiotic strains of Lactobacillus acidophilus (LA-5) and Bifidobacterium animalis subsp. Lactis (BB-12) in rats with systemic inflammatory response syndrome (SIRS) in comparison with the use of α- and β-adrenoblocker carvedilol and L-arginine, the precursor of nitric oxide (NO).
Materials and methods. Experiments were conducted on male Wistar rats in a model of SIRS including obesity and chemically induced colitis. Probiotic strains (PRK), L-arginine (ARG), and the α- and β-adrenoblocker carvedilol (ADB) were intragastrically administered to animals of the corresponding groups. Myocardial ischemia-reperfusion injury was reproduced in an isolated heart perfusion model. The size of the necrosis zone (SNZ) was determined using histochemistry. The concentration of cytokines in blood plasma was measured using an immunoenzyme technique.
Results. Myocardial SNZ in the group with SIRS modeling was significantly higher than in the control group (45 (38; 48)% and 30 (26; 31)%, p < 0.05). In the PRK and ARG groups, the SNZ was 32 (28; 35)% and 35 (26; 36)%, respectively, which was significantly lower compared to the SIRS group (p < 0.05). In the ADB group, the SNZ was 40 (31; 48)%, similar to the value in the SIRS group (p > 0.05). Hemodynamic parameters in isolated heart did not differ between the groups. The concentration of proinflammatory cytokines and transforming growth factor-β in plasma was significantly higher in the SIRS group than in the control. At the same time, in the PRK and ARG groups there was a significant decrease in the levels of some cytokines, confirming the presence of anti-inflammatory effect.
Conclusion. Administration of PRK in rats with the model of SIRS caused a decrease in SNZ. At the same time, blockade of α- and β-adrenoreceptors was not accompanied by a decrease in SNZ in this model. The amino acid L-arginine had similar to the PRK group cardioprotective and anti-inflammatory effect, which may indicate the similarity of the tested effects.
Keywords
About the Authors
Yu. Yu. BorshchevRussian Federation
2 Akkuratova St., 197341 St. Petersburg, Russian Federation
68 Leningradskaya St., 197758 St. Petersburg, Pesochny, Russian Federation
Competing Interests:
The authors declare the absence of obvious and potential conflict of interest related to the publication of this article.
S. M. Minasyan
Russian Federation
2 Akkuratova St., 197341 St. Petersburg, Russian Federation
6-8 L’va Tolstogo St., 197022 St. Petersburg, Russian Federation
Competing Interests:
The authors declare the absence of obvious and potential conflict of interest related to the publication of this article.
I. Yu. Burovenko
Russian Federation
2 Akkuratova St., 197341 St. Petersburg, Russian Federation
Competing Interests:
The authors declare the absence of obvious and potential conflict of interest related to the publication of this article.
E. S. Protsak
Russian Federation
2 Akkuratova St., 197341 St. Petersburg, Russian Federation
Competing Interests:
The authors declare the absence of obvious and potential conflict of interest related to the publication of this article.
V. Yu. Borshchev
Russian Federation
6-8 L’va Tolstogo St., 197022 St. Petersburg, Russian Federation
Competing Interests:
The authors declare the absence of obvious and potential conflict of interest related to the publication of this article.
O. V. Borshcheva
Russian Federation
2 Akkuratova St., 197341 St. Petersburg, Russian Federation
Competing Interests:
The authors declare the absence of obvious and potential conflict of interest related to the publication of this article.
M. M. Galagudza
Russian Federation
2 Akkuratova St., 197341 St. Petersburg, Russian Federation
6-8 L’va Tolstogo St., 197022 St. Petersburg, Russian Federation
26 Rizhsky Ave., 190103 St. Petersburg, Russian Federation
Competing Interests:
The authors declare the absence of obvious and potential conflict of interest related to the publication of this article.
References
1. Huse O., Lobstein T., Jewell J., Zahr S., Williams D., Leon K. et al. Healthy weight in childhood. Bull. World Health Organ. 2023;101(3):226–228. DOI: 10.2471/BLT.22.289049.
2. Галагудза М.М., Шляхто Е.В., Власов Т.Д., Нифонтов Е.М., Петрищев Н.Н. Кардиопротекция: фундаментальные и клинические аспекты. СПб.: НП-Принт, 2013:399.
3. Борщев Ю.Ю., Буровенко И.Ю., Карасева А.Б., Минасян С.М., Борщев В.Ю., Семенова Н.Ю. и др. Моделирование синдрома системной воспалительной реакции химической индукцией травмы толстого кишечника у крыс. Медицинская иммунология. 2020;22(1):87–98. DOI: 10.15789/1563-0625-MOS-1839.
4. Борщев Ю.Ю., Буровенко И.Ю., Карасева А.Б., Минасян С.М., Процак Е.С., Борщев В.Ю. и др. Влияние качественного состава высокожировой диеты на уровень цитокинов и устойчивость миокарда к ишемии-реперфузии у крыс с синдромом системного воспалительного ответа. Медицинская иммунология. 2021;23(5):1089–1104. DOI: 10.15789/1563-0625-EOT-2166.
5. Буровенко И.Ю., Сонин Д.Л., Борщева О.В., Истомина М.С., Зайцева Е.А., Процак Е.С. и др. Влияние кишечной микробиоты на устойчивость миокарда к ишемическому-реперфузионному повреждению. Сибирский журнал клинической и экспериментальной медицины. 2023;38(4):86–96. DOI: 10.29001/2073-8552-2023-38-4-86-96.
6. Wu H., Chiou J. Potential benefits of probiotics and prebiotics for coronary heart disease and stroke. Nutrients. 2021;13(8):2878. DOI: 10.3390/nu13082878.
7. Hanna A., Frangogiannis N.G. Inflammatory cytokines and chemokines as therapeutic targets in heart failure. Cardiovasc. Drugs Ther. 2020;34(6):849–863. DOI: 10.1007/s10557-020-07071-0.
8. Lam V., Su J., Hsu A., Gross G.J., Salzman N.H., Baker J.E. Intestinal microbial metabolites are linked to severity of myocardial infarction in rats. PLoS One. 2016;11(8):e0160840. DOI: 10.1371/journal.pone.0160840.
9. Danilo C.A., Constantopoulos E., McKee L.A., Chen H., Regan J.A., Lipovka Y. et al. Bifidobacterium animalis subsp. lactis 420 mitigates the pathological impact of myocardial infarction in the mouse. Benef. Microbes. 2017;8(2):257–269. DOI: 10.3920/BM2016.0119.
10. Borshchev Yu.Y., Burovenko I.Y., Karaseva A.B., Minasian S.M., Protsak E.S., Borshchev V.Y. et al. Probiotic therapy with Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis results in infarct size limitation in rats with obesity and chemically induced colitis. Microorganisms. 2022;10(11):2293. DOI: 10.3390/microorganisms10112293.
11. Sharma J.N., Al-Omran A., Parvathy S.S. Role of nitric oxide in inflammatory diseases. Inflammopharmacology. 2007;15(6):252–259. DOI: 10.1007/s10787-007-0013-x.
12. Horimoto H., Gaudette G.R., Saltman A.E., Krukenkamp I.B. The role of nitric oxide, K(+)(ATP) channels, and cGMP in the preconditioning response of the rabbit. J. Surg. Res. 2000;92(1):56–63. DOI: 10.1006/jsre.2000.5845.
13. Post H., Schulz R., Behrends M., Gres P., Umschlag C., Heusch G. No involvement of endogenous nitric oxide in classical ischemic preconditioning in swine. J. Mol. Cell Cardiol. 2000;32(5):725–733. DOI: 10.1006/jmcc.2000.1117.
14. Pongratz G., Straub R.H. Chronic effects of the sympathetic nervous system in inflammatory models. Neuroimmunomodulation. 2023;30(1):113–134. DOI: 10.1159/000530969.
15. Somoza B., González C., Cachofeiro V., Lahera V., Fernández-Alfonso M.S. Chronic l-arginine treatment reduces vascular smooth muscle cell hypertrophy through cell cycle modifications in spontaneously hypertensive rats. J. Hypertens. 2004;22(4):751–758. DOI: 10.1097/00004872-200404000-00018.
16. Diogo L.N., Faustino I.V., Afonso R.A., Pereira S.A., Monteiro E.C., Santos A.I. Voluntary oral administration of losartan in rats. J. Am. Assoc. Lab. Anim. Sci. 2015;54(5):549–556.
17. Mami W., Znaidi-Marzouki S., Doghri R., Ben Ahmed M., Znaidi S., Messadi E. Inflammatory bowel disease increases the severity of myocardial infarction after acute ischemia-reperfusion injury in mice. Biomedicines. 2023;11(11):2945. DOI: 10.3390/biomedicines11112945.
18. Cristofori F., Dargenio V.N., Dargenio C., Miniello V.L., Barone M., Francavilla R. Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: a door to the body. Front. Immunol. 2021;12:578386. DOI: 10.3389/fimmu.2021.578386.
19. Борщев Ю.Ю., Минасян С.М., Семёнова Н.Ю., Буровенко И.Ю., Борщева О.В., Гриценко Э.Ю. и др. Влияние про- и метабиотической формы штамма Lactobacillus delbrueckii D5 на устойчивость миокарда к ишемии-реперфузии в условиях системного воспалительного ответа у крыс. Бюллетень сибирской медицины. 2024;23(2):28–36. DOI: 10.20538/1682-0363-2024-2-28-36.
20. Kimura I., Ichimura A., Ohue-Kitano R., Igarashi M. Free fatty acid receptors in health and disease. Physiol. Rev. 2020;100(1):171–210. DOI: 10.1152/physrev.00041.2018.
21. Wang J., Zhang J., Lin X., Wang Y., Wu X., Yang F. et al. DCA-TGR5 signaling activation alleviates inflammatory response and improves cardiac function in myocardial infarction. J. Mol. Cell Cardiol. 2021;151:3–14. DOI: 10.1016/j.yjmcc.2020.10.014.
22. Alvares T.S., Conte-Junior C.A., Silva J.T., Paschoalin V.M. Acute L-arginine supplementation does not increase nitric oxide production in healthy subjects. Nutr. Metab. (Lond.). 2012;9(1):54. DOI: 10.1186/1743-7075-9-54.
23. Lochner A., Marais E., Genade S., Moolman J.A. Nitric oxide: a trigger for classic preconditioning? Am. J. Physiol. Heart Circ. Physiol. 2000;279(6):H2752–Н2765. DOI: 10.1152/ajpheart.2000.279.6.H2752.
24. Totzeck M., Hendgen-Cotta U.B., Rassaf T. Nitrite-nitric oxide signaling and cardioprotection. Adv. Exp. Med. Biol. 2017;982:335–346. DOI: 10.1007/978-3-319-55330-6_18.
25. Bates E.R. Intravenous beta-blockers in patients with STelevation myocardial infarction treated with primary PCI. EuroIntervention. 2017;13(2):е149–e151. DOI: 10.4244/EIJV13I2A21.
26. Sackner-Bernstein J.D. New evidence from the CAPRICORN Trial: the role of carvedilol in high-risk, post-myocardial infarction patients. Rev. Cardiovasc. Med. 2003;4 Suppl.3:S25–S29.
27. Chen J., Huang C., Zhang B., Huang Q., Chen J., Xu L. The effects of carvedilol on cardiac structural remodeling: the role of endogenous nitric oxide in the activity of carvedilol. Mol. Med. Rep. 2013;7(4):1155–1158. DOI: 10.3892/mmr.2013.1329.
28. Afonso R.A., Patarrao R.S., Macedo M.P., Carmo M.M. Carvedilol action is dependent on endogenous production of nitric oxide. Am. J. Hypertens. 2006;19(4):419–425. DOI: 10.1016/j.amjhyper.2005.11.011.
Review
For citations:
Borshchev Yu.Yu., Minasyan S.M., Burovenko I.Yu., Protsak E.S., Borshchev V.Yu., Borshcheva O.V., Galagudza M.M. Effect of probiotic strains, L-arginine and carvedilol on myocardial infarction size in systemic inflammation in rats. Bulletin of Siberian Medicine. 2025;24(2):5-13. (In Russ.) https://doi.org/10.20538/1682-0363-2025-2-5-13