Features of the course of pregnancy complicated by gestational diabetes and a novel coronavirus infection
https://doi.org/10.20538/1682-0363-2025-2-74-82
Abstract
Aim. To study the role of metabolic disorders in the development of perinatal complications of the novel coronavirus infection.
Materials and methods. The analysis of the course of pregnancy and childbirth in pregnant women who had a novel coronavirus infection (170) and without it (100), and their newborns (270).
Results. A novel coronavirus infection (NCI) during pregnancy leads to the development of complications: preeclampsia (p = 0.012), premature birth (p = 0.038), premature detachment of the normally located placenta (p = 0.05), fetal growth retardation (p = 0.028), gestational diabetes mellitus (GDM) (p = 0.023), intrauterine infection (p = 0.048) and asphyxia of the newborn (p = 0.04). Gestational diabetes mellitus is 2 times more likely to accompany a moderate form of NCI, as opposed to a mild one (p = 0.001). Infection with the SARS-CoV2 virus on the background of previous GDM contributes to the development of moderate NCI (p = 0.005). Hyperglycemia in GDM after moderate NCI more often than after mild requires the appointment of insulin (p = 0.03). The combination of NCI and GDM is characterized by the development of polyhydramnios (p = 0.02), the risk of which increases in the presence of hereditary thrombophilia. The neonatal period is more often complicated by intrauterine pneumonia if the mother has a combination of NCI and GDM.
Conclusion. The risk of developing metabolic disorders and perinatal complications in pregnant women who had a novel coronavirus infection is significantly higher than in pregnant women without a novel coronavirus infection.
About the Authors
E. M. MatusevichRussian Federation
2 Moskovsky trakt, 634050 Tomsk, Russian Federation
Competing Interests:
The authors declare the absence of obvious or potential conflict of interest related to the publication of this article.
S. Yu. Yuryev
Russian Federation
2 Moskovsky trakt, 634050 Tomsk, Russian Federation
Competing Interests:
The authors declare the absence of obvious or potential conflict of interest related to the publication of this article.
V. E. Frankevich
Russian Federation
4 Akademika Oparina St., 117997 Moscow, Russian Federation
Competing Interests:
The authors declare the absence of obvious or potential conflict of interest related to the publication of this article.
N. A. Frankevich
Russian Federation
4 Akademika Oparina St., 117997 Moscow, Russian Federation
Competing Interests:
The authors declare the absence of obvious or potential conflict of interest related to the publication of this article.
I. S. Popova
Russian Federation
2 Moskovsky trakt, 634050 Tomsk, Russian Federation
Competing Interests:
The authors declare the absence of obvious or potential conflict of interest related to the publication of this article.
A. A. Kutsenko
Russian Federation
2 Moskovsky trakt, 634050 Tomsk, Russian Federation
Competing Interests:
The authors declare the absence of obvious or potential conflict of interest related to the publication of this article.
A. G. Vasilyeva
Russian Federation
2 Moskovsky trakt, 634050 Tomsk, Russian Federation
Competing Interests:
The authors declare the absence of obvious or potential conflict of interest related to the publication of this article.
D. R. Melikh
Russian Federation
2 Moskovsky trakt, 634050 Tomsk, Russian Federation
Competing Interests:
The authors declare the absence of obvious or potential conflict of interest related to the publication of this article.
N. D. Zimina
Russian Federation
2 Moskovsky trakt, 634050 Tomsk, Russian Federation
Competing Interests:
The authors declare the absence of obvious or potential conflict of interest related to the publication of this article.
References
1. Hamming I., Timens W., Bulthuis ML., Lely A.T., Navis G., van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. Pathology. 2004;203(2):631–637. DOI: 10.1002/path.1570.
2. Harmer D., Gilbert M., Borman R., Clark K.L. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett. 2002;4:532(1–2):107–110. DOI: 10.1016/s0014-5793(02)03640-2.
3. Yang J.K., Lin S.S., Ji X.J., Guo L.M. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetology. 2010;47(3):193. DOI: 10.1007/s00592-009-0109-4.
4. Luyendyk J.P., Schoenecker J.G., Flick M.J. The multifaceted role of fibrinogen in tissue injury and inflammation. Blood. 2019;133(6):511–520. DOI: 10.1182/blood-2018-07-818211.
5. Жорова В.Е., Манасова З.Ш. Гестационный сахарный диабет: патогенез, особенности диагностики и лечения. Здоровье и образование в XXI веке. 2015;4:367–373.
6. Suwanwongse K., Shabarek N. Newly diagnosed diabetes mellitus, DKA, and COVID-19: Causality or coincidence? A report of three cases. Med. Virol. 2021;93(2):1150–1153. DOI: 10.1002/jmv.26339.
7. Wang Y., Zhang X., Zheng X., Song G., Fang L., Wang Y. et al. Human cytomegalovirus infection and its association with gestational diabetes mellitus during pregnancy. Peer J. 2022;15:10:e12934. DOI: 10.7717/peerj.12934.
8. McElwain C.J., McCarthy F.P., McCarthy C.M. Gestational diabetes mellitus and maternal immune dysregulation. Int. J. Mol. Sci. 2021;22(8):4261. DOI: 10.3390/ijms22084261.
9. Kleinwechter H.J., Weber K.S., Mingers N., Ramsauer B. Schaefer-Graf U.M., Groten T. et al; COVID-19-Related Obstetric and Neonatal Outcome Study Network. Gestational diabetes mellitus and COVID-19: results from the COVID-19-Related Obstetric and Neonatal Outcome Study. Am. J. Obstet. Gynecol. 2022;227(4):631.e1–631.e19. DOI: 10.1016/j.ajog.2022.05.027.
10. Kleinwechter H.J., Weber K.S., Liedtke T.P., Schäfer-Graf U., Groten T., Rüdiger M. et al. COVID-19, pregnancy, and diabetes mellitus. Z. Geburtshilfe Neonatol. 2024;228(1):17–31. DOI: 10.1055/a-2180-7715.
11. Teliga-Czajkowska J., Sienko J., Zareba-Szczudlik J., Malinowska-Polubiec A., Romejko-Wolniewicz E., Czajkowski K. Influence of glycemic control on coagulation and lipid metabolism in pregnancies complicated by pregestational and gestational diabetes mellitus. Adv. Exp. Med. Biol. 2019;1176:81–88. DOI: 10.1007/5584_2019_382.
12. Bernea E.G., Suica V.I., Uyy E., Cerveanu-Hogas A., Boteanu R.M., Ivan L. et al. Exosome proteomics reveals the deregulation of coagulation, complement and lipid metabolism proteins in gestational diabetes mellitus. Molecules. 2022;27(17):5502. DOI: 10.3390/molecules27175502.
13. Беттихер О.А., Зазерская И.Е., Попова П.В., Васильева Е.Ю., Барт В.А. Характеристика преэклампсии у беременных с гестационным диабетом. Журнал акушерства и женских болезней. 2019;5:19–36. DOI: 10.17816/JOWD68519-36.
14. Pagan M., Strebeck R., Dajani N., Sandlin A., Ounpraseuth S., Manning N. et al. Title: is mild idiopathic polyhydramnios associated with an increased risk for an intrauterine fetal demise? Int. J. Womens Health. 2023;15:125–134. DOI: 10.2147/IJWH.S386567.
15. Menon R., Behnia F., Polettini J., Richardson L.S. Novel pathways of inflammation in human fetal membranes associated with preterm birth and preterm pre-labor rupture of the membranes. Semin. Immunopathol. 2020;42(4):431–450. DOI: 10.1007/s00281-020-00808-x.
16. Hu X., Wang J., Li Y., Wu J., Qiao S., Xu S. et al. The β-fibrinogen gene 455G/A polymorphism associated with cardioembolic stroke in atrial fibrillation with low CHA2DS2-VaSc score. Sci. Rep. 2017;7(1):17517. DOI: 10.1038/s41598-017-17537-1.
17. Murugan C., Ramamoorthy S., Kuppuswamy G., Murugan R.K., Sivalingam Y., Sundaramurthy A. COVID-19: A review of newly formed viral clades, pathophysiology, therapeutic strategies and current vaccination tasks. Int. J. Biol. Macromol. 2021;193(Pt B):1165–1200. DOI: 10.1016/j.ijbiomac.2021.10.144.
18. Бычкова С.В., Мальгина Г.Б., Дьякова М.М., Чистякова Г.Н., Абакарова Д.А. Новорожденные от матерей, перенесших COVID-19 во время беременности: критические состояния неонатального периода. Педиатрия им Г.Н. Сперанского. 2024;103(1):58–65. DOI: 10.24110/0031-403X-2024-103-1-58-65.
19. Agostinis C., Toffoli M., Spazzapan M., Balduit A., Zito G., Mangogna A. et al. SARS-CoV-2 modulates virus receptor expression in placenta and can induce trophoblast fusion, inflammation and endothelial permeability. Front. Immunol. 2022;13:957224. DOI: 10.3389/fimmu.2022.957224.
20. Man O.M., Azamor T., Cambou M.C., Fuller T.L., Kerin T., Paiola S.G. et al. Respiratory distress in SARS-CoV-2 exposed uninfected neonates followed in the COVID Outcomes in Mother-Infant Pairs (COMP) Study. Nat. Commun 15. 2024;399. DOI: 10.1038/s41467-023-44549-5.
Review
For citations:
Matusevich E.M., Yuryev S.Yu., Frankevich V.E., Frankevich N.A., Popova I.S., Kutsenko A.A., Vasilyeva A.G., Melikh D.R., Zimina N.D. Features of the course of pregnancy complicated by gestational diabetes and a novel coronavirus infection. Bulletin of Siberian Medicine. 2025;24(2):74-82. (In Russ.) https://doi.org/10.20538/1682-0363-2025-2-74-82