Preview

Bulletin of Siberian Medicine

Advanced search

Glycemic-dependent changes of skin autofluorescence level in children and adolescents with type 1 diabetes mellitus

https://doi.org/10.20538/1682-0363-2025-2-83-90

Abstract

Aim. To study the effect of glycated hemoglobin level, average daily glycemia and its variability on UV-induced skin autofluorescence in children and adolescents with type 1 diabetes.
Materials and methods. The study included 47 children and adolescents with type 1 diabetes living in a restrictedaccess administrative and territorial unit. The autofluorescence spectra of the skin from the inner surface of the shoulder and nails of patients were recorded using an original compact spectrofluorometer based on STS-VIS OCEAN OPTICS © USA microspectrometer with UVA excitation. The statistical analysis was performed using Statsoft Statistica 12.0 software. The fluorescence spectra were normalized to the average value of the UV LED signal and the moving average smoothed using a 10 nm window. Then, the renormalization of spectra was carried out, minimizing their spread from the average sample spectrum.
Results. The study revealed the most changeable regions of UV-induced skin autofluorescence spectrum with variations in the level of glycated hemoglobin, average daily glycemia, and glycemic variability.
Conclusion. The study confirms the prospects of using skin autofluorescence measurements as a non-invasive tool for assessing the state of carbohydrate metabolism.

About the Authors

M. V. Proskurina
Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University (KrasSMU)
Russian Federation

1 Partizan Zheleznyak St., 660022 Krasnoyarsk, Russian Federation


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article.



N. G. Kiseleva
Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University (KrasSMU)
Russian Federation

1 Partizan Zheleznyak St., 660022 Krasnoyarsk, Russian Federation


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article.



V. V. Salmin
Moscow Institute of Physics and Technology (National Research University, MIPT); Bauman Moscow State Technical University (National Research University, BMSTU); National Research Nuclear University Moscow Engineering Physics Institute (MEPHI)
Russian Federation

1A Bldg. 1 Kerchenskaya St., 117303 Moscow, Russian Federation

5 Bldg. 1 2-ya Baumanskaya St., 105005 Moscow, Russian Federation

31 Kashirskoye Rd., 115409 Moscow, Russian Federation 


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article.



T. E. Taranushenko
Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University (KrasSMU)
Russian Federation

1 Partizan Zheleznyak St., 660022 Krasnoyarsk, Russian Federation


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article.



References

1. Дедов И.И., Шестакова М.В., Майоров А.Ю. и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом, 11-й выпуск. Сахарный диабет. 2023;26(2):1–157. DOI: 10.14341/DM13042.

2. English E., Lenters-Westra E. HbA1c method performance: The great success story of global standardization. Crit. Rev. Clin. Lab. Sci. 2018;55(6):408–419. DOI: 10.1080/10408363.2018.1480591.

3. Klimontov V.V., Saik O.V., Korbut A.I. Glucose variability: How does it work? Int. J. Mol. Sci. 2021;22(15):7783. DOI: 10.3390/ijms22157783.

4. Maiorino M.I., Signoriello S., Maio A., Chiodini P., Bellastella G., Scappaticcio L. et al. Effects of Continuous Glucose Monitoring on Metrics of Glycemic Control in Diabetes: A Systematic Review with Meta-analysis of Randomized Controlled Trials. Diabetes Care. 2020;43(5):1146–1156. DOI: 10.2337/dc19-1459.

5. Danne T., Nimri R., Battelino T., Bergenstal R.M., Close K.L., DeVries J.H. et al. International consensus on use of continuous glucose monitoring. Diabetes Care. 2017;40(12):1631–1640. DOI: 10.2337/dc17-1600.

6. Friedman J.G., Coyne K., Aleppo G., Szmuilowicz E.D. Beyond A1C: exploring continuous glucose monitoring metrics in managing diabetes. Endocr. Connect. 2023;12(7):e230085. DOI: 10.1530/EC-23-0085.

7. Hosseini M.S., Razavi Z., Ehsani A.H., Firooz A., Afazeli S. Clinical Significance of Non-invasive Skin Autofluorescence Measurement in Patients with Diabetes: A Systematic Review and Meta-analysis. EClinical Medicine. 2021;42:101194. DOI: 10.1016/j.eclinm.2021.101194.

8. Atzeni I.M., van de Zande S.C., Westra J., Zwerver J., Smit A.J., Mulder D.J. The AGE Reader: A non-invasive method to assess long-term tissue damage. Methods. 2022;203:533–541. DOI: 10.1016/j.ymeth.2021.02.016.

9. Topakova A.A., Salmin V.V., Gar’kavenko V.V., Levchenko J.S., Lazarenko V.I. Development of optoelectronic hardware: program complex for the analysis of hypoxia in the anterior eye camera in persons wearing contact lenses. Proc. SPIE 9917, Saratov Fall Meeting 2015: Third International Symposium on Optics and Biophotonics and Seventh Finnish-Russian Photonics and Laser Symposium (PALS), 991715 (21 April 2016). DOI: 10.1117/12.2229816.

10. Januszewski A.S., Xu D., Cho Y.H., Benitez-Aguirre P.Z., O’Neal D.N., Craig M.E. et al. Skin autofluorescence in people with type 1 diabetes and people without diabetes: An eight-decade cross-sectional study with evidence of accelerated aging and associations with complications. Diabet. Med. 2021;38(7):e14432. DOI: 10.1111/dme.14432.

11. Cho Y.H., Craig M.E., Januszewski A.S., Benitez-Aguirre P., Hing S., Jenkins A.J. et al. Higher skin autofluorescence in young people with Type 1 diabetes and microvascular complications. Diabet. Med. 2017;34(4):543–550. DOI: 10.1111/dme.13280.

12. Podolakova K., Barak L., Jancova E., Stanik J., Sebekova K., Podracka L. The Bright side of skin autofluorescence determination incChildren and adolescents with newly diagnosed type 1 diabetes mellitus: a potential predictor of remission? Int. J. Environ. Res. Public. Health. 2022;19(19):11950. DOI: 10.3390/ijerph191911950.

13. Tuchina, D.K., Tuchin V.V. Optical and structural properties of biological tissues under diabetes mellitus. Journal of Biomedical Photonics & Engineering. 2018;4(2):4–25. DOI: 10.18287/JBPE18.04.020201.

14. Heinemann, L., Schmelzeisen-Redeker G., Non-invasive task force (NITF). Non-invasive continuous glucose monitoring in Type I diabetic patients with optical glucose sensors. Diabetologia.1998;41:848–854.

15. Solares I., Jericó D., Córdoba K.M., Morales-Conejo M., Ena J., Enríquez de Salamanca R. et al. Understanding carbohydrate metabolism and insulin resistance in acute intermittent porphyria. Int. J. Mol. Sci. 2022;24(1):51. DOI: 10.3390/ijms24010051.

16. Wolosowicz M., Lukaszuk B., Chabowski A. The causes of insulin resistance in type 1 diabetes mellitus: Is there a place for qaternary prevention? Int. J. Environ. Res. Public Health. 2020;17(22):8651. DOI: 10.3390/ijerph17228651.


Review

For citations:


Proskurina M.V., Kiseleva N.G., Salmin V.V., Taranushenko T.E. Glycemic-dependent changes of skin autofluorescence level in children and adolescents with type 1 diabetes mellitus. Bulletin of Siberian Medicine. 2025;24(2):83-90. (In Russ.) https://doi.org/10.20538/1682-0363-2025-2-83-90

Views: 30


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)