Preview

Bulletin of Siberian Medicine

Advanced search

Response of systemic hemodynamic parameters to changes in blood viscosity in spontaneously hypertensive rats

https://doi.org/10.20538/1682-0363-2025-2-91-97

Abstract

Aim. To study the response of systemic hemodynamic parameters to a decrease in blood viscosity in spontaneously hypertensive rats (SHR) compared to normotensive Wistar rats.
Materials and methods. Systemic hemodynamic parameters were recorded using the MP150 system (Biopac Systems, Inc., USA). Blood viscosity was measured using a Brookfield DV–II+Pro rotational viscometer (Brookfield Engineering Labs Inc., USA) at 36°C and a shear rate of 450 s–1. Blood viscosity was reduced using isovolemic hemodilution.
Results. The decrease in the blood viscosity in Wistar rats was not accompanied by significant changes in the parameters of systemic hemodynamics. Only a slight decrease in the mean blood pressire was revealed, probably associated with the experimental conditions and the effect of isoflurane anesthesia. Unlike normotensive animals, in SHR isovolemic hemodilution led to a marked decrease in total peripheral vascular resistance, heart rate, blood pressure, and an increase in stroke volume. At the same time, in SHR rats, the hypotensive reaction of blood pressure in response to a decrease in blood viscosity was 3 times greater than in Wistar rats, which indicates impaired vascular tone regulation in response to a change in shear stress.
Conclusion. Thus, in normotensive animals, a decrease in blood viscosity as a result of isovolemic hemodilution does not cause changes in the main parameters of systemic hemodynamics. In contrast, in spontaneously hypertensive animals, total peripheral vascular resistance and blood pressure decrease alongside with blood viscosity, indicating impaired endothelium-dependent vascular tone regulation in response to changes in shear stress. The results obtained substantiate the use of drugs that reduce blood viscosity as a promising direction in the complex pharmacotherapy of hypertension and its complications.

About the Authors

A. V. Sidekhmenova
Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center (NRMC), Russian Academy of Scienses
Russian Federation

3 Lenin Av., 634050 Tomsk, Russian Federation


Competing Interests:

The authors declare no obvious or potential conflicts of interest related to the publication of this article.



A. M. Anishchenko
Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center (NRMC), Russian Academy of Scienses; Siberian State Medical University
Russian Federation

3 Lenin Av., 634050 Tomsk, Russian Federation

2 Moskovsky trakt, 634050 Tomsk, Russian Federation 


Competing Interests:

The authors declare no obvious or potential conflicts of interest related to the publication of this article.



O. I. Aliev
Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center (NRMC), Russian Academy of Scienses
Russian Federation

3 Lenin Av., 634050 Tomsk, Russian Federation


Competing Interests:

The authors declare no obvious or potential conflicts of interest related to the publication of this article.



O. A. Ulyakhina
Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center (NRMC), Russian Academy of Scienses
Russian Federation

3 Lenin Av., 634050 Tomsk, Russian Federation


Competing Interests:

The authors declare no obvious or potential conflicts of interest related to the publication of this article.



O. I. Poleshchuk
Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center (NRMC), Russian Academy of Scienses
Russian Federation

3 Lenin Av., 634050 Tomsk, Russian Federation


Competing Interests:

The authors declare no obvious or potential conflicts of interest related to the publication of this article.



M. B. Plotnikov
Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center (NRMC), Russian Academy of Scienses
Russian Federation

3 Lenin Av., 634050 Tomsk, Russian Federation


Competing Interests:

The authors declare no obvious or potential conflicts of interest related to the publication of this article.



References

1. Oparil S., Acelajado M.C., Bakris G.L., Berlowitz D.R., Cífková R., Dominiczak A.F. et al. Hypertension. Nat. Rev. Dis. Primers. 2018;4:18014. DOI:10.1038/nrdp.2018.14.

2. Mancia G., Kreutz R., Brunström M., Burnier M., Grassi G., Januszewicz A. et al. J. Hypertens. 2023;41(12):1874–2071. DOI: 10.1097/HJH.0000000000003480.

3. Baskurt O.K., Meiselman H.J. Blood rheology and hemodynamics. Semin. Thromb. Hemost. 2024;50(6):902–915. DOI: 10.1055/s-0043-1777802

4. Sloop G., Holsworth R.E., Weidman J.J., St. Cyr J.A. The role of chronic hyperviscosity in vascular disease. Ther. Adv. Cardiovasc. Dis. 2015;9(1):19–25. DOI: 10.1177/1753944714553226.

5. Valeanu L., Ginghina C., Bubenek-Turconi S. Blood rheology alterations in patients with cardiovascular diseases. Rom J. Anaesth. Intensive Care. 2022;28(2):41–46. DOI:10.2478/rjaic-2021-0007.

6. Forconi S., Gori T. The evolution of the meaning of blood hyperviscosity in cardiovascular physiopathology: should we reinterpret Poiseuille? Clin. Hemorheol. Microcirc. 2009;42(1):1–6. DOI: 10.3233/CH-2009-1186.

7. Gori T., Wild P.S., Schnabel R., Schulz A., Pfeiffer N., Blettner M. et al. The distribution of whole blood viscosity, its determinants and relationship with arterial blood pressure in the community: cross-sectional analysis from the Gutenberg Health Study. Ther. Adv. Cardiovasc. Dis. 2015;9(6):354–365. DOI: 10.1177/1753944715589887.

8. Bonnin P., Vilar J., Levy B.I. Effect of normovolemic hematocrit changes on blood pressure and flow. Life Sci. 2016;157:62–66. DOI: 10.1016/j.lfs.2016.01.050.

9. Salazar Vázquez B.Y., Martini J., Tsai A.G., Johnson P.C., Cabrales P., Intaglietta M. The variability of blood pressure due to small changes of hematocrit. Am. J. Physiol. Heart Circ. Physiol. 2010;299(3):H863–H867. DOI: 10.1152/ajpheart.00496.2010.

10. Западнюк И.П., Западнюк В.И., Захария Е.А. Лабораторные животные. Киев: Вища школа; 1974:304.

11. Sixtus R.P., Gray C., Berry M.J., Dyson R.M. Nitrous oxide improves cardiovascular, respiratory, and thermal stability during prolonged isoflurane anesthesia in juvenile guinea pigs. Pharmacol. Res. Perspect. 2021;9(1):e00713. DOI: 10.1002/prp2.713.

12. Sidekhmenova A.V., Aliev O.I., Anishchenko A.M., Dunaeva O.I., Ulyakhina O.A., Plotnikov M.B. Influence of a decrease in blood viscosity on arterial pressure in normotensive and spontaneously hypertensive rats. Bull. Exp. Biol. Med. 2024;176:419–422. DOI: 10.1007/s10517-024-06038-7.

13. Martini J., Carpentier B., Negrete A.C., Frangos J.A., Intaglietta M. Paradoxical hypotension following increased hematocrit and blood viscosity. Am. J. Physiol. Heart. Circ. Physiol. 2005;289(5):2136–2143. DOI: 10.1152/ajpheart.00490.2005.

14. Bessa K.L., Belletati J.F., Santos L., Rossoni L.V., Ortiz J.P. Drag reduction by polyethylene glycol in the tail arterial bed of normotensive and hypertensive rats. Braz. J. Med. Biol. Res. 2011;44(8):767–777. DOI: 10.1590/s0100-879x2011007500071.

15. Tang E.H., Vanhoutte P.M. Endothelial dysfunction: a strategic target in the treatment of hypertension? Pflugers Arch. 2010;459(6):995–1004. DOI: 10.1007/s00424-010-0786-4.

16. Weil B.R., Stauffer B.L., Greiner J.J., DeSouza C.A. Prehypertension is associated with impaired nitric oxide-mediated endothelium-dependent vasodilation in sedentary adults. Am. J. Hypertens. 2011;24:976–981. DOI: 10.1038/ajh.2011.88.

17. Maio R., Suraci E., Caroleo B., Politi C., Gigliotti S., Sciacqua A. et al. New-onset diabetes, endothelial dysfunction, and cardiovascular outcomes in hypertensive patients: an illness-event model analysis. Biomedicines. 2021;9(7):721. DOI: 10.3390/biomedicines9070721.

18. Gallo G., Volpe M., Savoia C. Endothelial dysfunction in hypertension: current concepts and clinical implications. Front. Med. (Lausanne). 2022;20(8):798958. DOI: 10.3389/fmed.2021.798958.

19. Konukoglu D., Uzun H. Endothelial dysfunction and hypertension. Adv. Exp. Med. Biol. 2017;956:511–540. DOI: 10.1007/5584_2016_90.

20. Sandhagen B., Lind L. Whole blood viscosity and erythrocyte deformability are related to endothelium-dependent vasodilation and coronary risk in the elderly. The prospective investigation of the vasculature in Uppsala seniors (PIVUS) study. Clin. Hemorheol. Microcirc. 2012;50(4):301–311. DOI: 10.3233/CH-2011-1505.


Review

For citations:


Sidekhmenova A.V., Anishchenko A.M., Aliev O.I., Ulyakhina O.A., Poleshchuk O.I., Plotnikov M.B. Response of systemic hemodynamic parameters to changes in blood viscosity in spontaneously hypertensive rats. Bulletin of Siberian Medicine. 2025;24(2):91-97. (In Russ.) https://doi.org/10.20538/1682-0363-2025-2-91-97

Views: 27


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)