Preview

Bulletin of Siberian Medicine

Advanced search

Sensitization to food allergies in the context of atopic comorbidity

https://doi.org/10.20538/1682-0363-2025-2-153-161

Abstract

The lecture considers a place of food allergy in the profile of allergic and, in particular, atopic diseases and its features, distinguishing this pathology from all other allergies. Three classes of food allergens are characterized, and sensitization to them involving cells and regulatory molecules, such as neurotransmitters, neuropeptides, cytokines, and others mediators, is described in detail.
At the current level of science, the mechanisms of oral tolerance and the causes of its breakdown are considered, resulting in clinical manifestations of food allergies, characterized by high polymorphism and complexity of diagnosis. Not only is a high rate of comorbidity of food allergies emphasized, but also its exceptional risks are pinpointed in terms of the development of anaphylactic shock, which is a difficult issue to explain in nutrition and digestion. The final part of the lecture is devoted to current and future therapeutic interventions in this pathology.

About the Authors

P. Yu. Isaev
Kanevskaya Central Hospital
Russian Federation

108 Bolnichnaya St., Kanevskaya Village, 353780 Krasnodar Region, Russian Federation 


Competing Interests:

The authors declare the absence of obvious or potential conflict of interest related to the publication of this article. 



O. I. Urazova
Siberian State Medical University
Russian Federation

2 Moscovsky trakt, 634050 Tomsk, Russian Federation 


Competing Interests:

The authors declare the absence of obvious or potential conflict of interest related to the publication of this article. 



V. V. Klimov
Siberian State Medical University
Russian Federation

2 Moscovsky trakt, 634050 Tomsk, Russian Federation


Competing Interests:

The authors declare the absence of obvious or potential conflict of interest related to the publication of this article. 



M. I. Musina
Student Polyclinic
Russian Federation

74 Kievskaya St., 634041 Tomsk, Russian Federation 


Competing Interests:

The authors declare the absence of obvious or potential conflict of interest related to the publication of this article. 



D. S. Zagreshenko
Russian Medical Academy for Continuing Postgraduate Education, Novokuznetsk branch
Russian Federation

5 Stroiteley Аve., 654005 Novokuznetsk, Russian Federation 


Competing Interests:

The authors declare the absence of obvious or potential conflict of interest related to the publication of this article. 



A. A. Denisov
Siberian State Medical University
Russian Federation

2 Moscovsky trakt, 634050 Tomsk, Russian Federation 


Competing Interests:

The authors declare the absence of obvious or potential conflict of interest related to the publication of this article. 



Ya. V. Kukharev
Siberian State Medical University
Russian Federation

2 Moscovsky trakt, 634050 Tomsk, Russian Federation 


Competing Interests:

The authors declare the absence of obvious or potential conflict of interest related to the publication of this article. 



A. N. Shkatova
Student Polyclinic
Russian Federation

74 Kievskaya St., 634041 Tomsk, Russian Federation 


Competing Interests:

The authors declare the absence of obvious or potential conflict of interest related to the publication of this article. 



A. V. Klimov
Siberian State Medical University
Russian Federation

2 Moscovsky trakt, 634050 Tomsk, Russian Federation 


Competing Interests:

The authors declare the absence of obvious or potential conflict of interest related to the publication of this article. 



References

1. Klimov V., Cherevko N., Koshkarova N., Klimov A. Chapter 4. Food allergies: New challenges of our civilization. In: Ozdemir O. (ed.). New developments in diagnosis and therapy. London: IntechOpen, 2023:41–73. DOI: 10.5772/intechopen.102204.

2. Tuck C.J., Biesiekierski J.R., Schmid-Grendelmeier P., Pohl D. Food Intolerances. Nutrients. 2019;22;11(7):1684. DOI: 10.3390/nu11071684.

3. Baker M.G., Sampson H.A. Phenotypes and endotypes of food allergy: a path to better understanding the pathogenesis and prognosis of food allergy. Ann. Allergy Asthma Immunol. 2018;120:245–253. DOI: 10.1016/j.anai.2018.01.027.

4. Sicherer S.H., Dampson H.A. Food allergy: a review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. J. Allergy Clin. Immunol. 2018;141(1):41–58. DOI: 10.1016/j.jaci.2017.11.003.

5. Hwang D.W., Nagler C.R., Ciaccio C.E. New and emerging concepts and therapies for the treatment of food allergy. Immunother. Adv. 2022;2:1–7. DOI: 10.1093/immadv/ltac006.

6. Klimov V.V. Textbook of allergen tolerance. 1st ed. Cham: Springer, 2022:325. DOI: 10.1007/978-3-031-04309-3.

7. Mangalam A.K., Ochoa-Reparaz J.O. Editorial: The role of the gut microbiota in health and inflammatory diseases. Front. Immunol. 2020;11:565305. DOI: 10.3389/fimmu.2020.565305.

8. Choden T., Cohen N.A. The gut microbiome and the immune system. Explor. Med. 2022;3:219–233. DOI: 10.37349/emed.2022.00087.

9. Кухарев Я.В., Климов А.В., Климов В.В., Щербик Н.В., Шкатова А.Н., Слёзкин М.И. и др. Корреляция частоты атопической коморбидности с лабораторными показателями при аллергическом рините. Российский иммунологический журнал. 2024;27(4):913–918. DOI: 10.46235/1028-7221-16911-RCB.

10. Fu L., Cherayil B.J., Shi H., Wang Y., Zhu Y. Allergenicity evaluation of food proteins. In: Food allergy. Singapore: Springer, 2019:93–122. DOI: 10.1007/978-981-13-6928-5_5.

11. Hayes M. Chapter 14. Allergenicity of food proteins. In: Hayes M. (ed.). Novel proteins for food, pharmaceuticals and agriculture. Sources, applications and advances. Chichester: Wiley, 2018:269–280. DOI: 10.1002/9781119385332.ch14.

12. Ali A., Tan H.Y., Kaiko G.E. Role of the intestinal epithelium and its interaction with the microbiota in food allergy. Front. Immunol. 2020;11:604054. DOI: 10.3389/fimmu.2020.604054.

13. Newberry R.D., Hogan S.P. Intestinal epithelial cells in tolerance and allergy to dietary antigens. J. Allergy Clin. Immunol. 2021;147(1):45–48. DOI: 10.1016/j.jaci.2020.10.030.

14. Palm N.W., de Zoete M.R., Flavell R.A. Immune-microbiota interactions in health and disease. Clin. Immunol. 2015;159(2):122–127. DOI: 10.1016/j.clim.2015.05.014.

15. Lee K.H., Song Y., Wu W., Yu K., Zhang G. The gut microbiota, environmental factors, and links to the development of food allergy. Clin. Mol. Allergy. 2020;18:5. DOI: 10.1186/s12948-020-00120-x.

16. De Oliveira G.L.V., Cardoso C.R.B., Taneja V., Fasano A. Editorial: Intestinal dysbiosis in inflammatory diseases. Front. Immunol. 2021;12:727485. DOI: 10.3389/fimmu.2021.727485.

17. Valenta R., Hochwallner H., Linhart B., Pahr S. Food allergies: The basics. Gastroenterology. 2015;148(6):1120–1131. DOI: 10.1053/j.gastro.2015.02.006.

18. Koenig J.F.E., Bruton K., Phelps A., Grydziuszko E., Jimenez-Saiz R., Jordana M. Memory generation and re-activation in food allergy. ImmunoTargets Ther. 2021;10:171–184. DOI: 10.2147/ITT.S284823.

19. Wang Y.-H. Developing food allergy: a potential immunologic pathway linking skin barrier to gut. F1000Res. 2016;5:2660. DOI: 10.12688/f1000research.9497.1.

20. Alcocer M.J.C., Ares S.C., Lopez-Calleja I. Recent advances in food allergy. Braz. J. Food Technol. 2016;19. DOI: 10.1590/1981-6723.4716.

21. Beck S.C., Wilding T., Buka R.J., Baretto R.L., Huissoon A.P., Krishna M.T. Biomarkers in human anaphylaxis: a critical appraisal of current evidence and perspectives. Front. Immunol. 2019;10:494. DOI: 10.3389/fimmu.2019.00494.

22. Jeon Y.H. Pollen-food allergy syndrome in children. Clin. Exp. Pediatr. 2020;63(12):463–468. DOI: 10.3345/cep.2019.00780.

23. Jeebhay M.F., Moscato G., Bang B.E., Folleti I., Lipinska-Ojrzanowska L.A.L., Lopata A.I. et al. Food processing and occupational respiratory allergy – an EAACI position paper. Allergy. 2019;74:1852–1871. DOI: 10.1111/all.13807.

24. Rizzi A., Lo Presti E., Chini R., Gammeri L., Inchingolo R., Lohmeyer F.M. et al. Emerging role of alarmins in food allergy: an update on pathophysiological insights, potential use as disease biomarkers, and therapeutic implications. J. Clin. Med. 2023;12(7):2699. DOI: 10.3390/jcm12072699.

25. Schoos A.-M.M., Bullens D., Chawes B.L., De Vlieger L., Dunn-Galvin A., Epstein M.M. et al. Immunological outcomes of allergen-specific immunotherapy in food allergy. Front. Immunol. 2020;11:568598. DOI: 10.3389/fimmu.2020.568598.

26. Liu E.G., Yin X., Swaminathan A., Eisenbarth S.C. Antigen-presenting cells in food tolerance and allergy. Front. Immunol. 2021;11:616020. DOI: 10.3389/fimmu.2020.616020.

27. Raker V.K., Domogalla M.P., Steinbrink K. Tolerogenic dendritic cells for regulatory T cell induction in man. Front. Immunol. 2015;6:569. DOI: 10.3389/fimmu.2015.00569.

28. Shevyrev D., Tereshchenko V. Treg heterogeneity, function, and homeostasis. Front. Immunol. 2020;10:3100. DOI: 10.3389/fmmu.2019.03100.

29. Motos T.R., Hirakawa M., Alho A.C., Neleman L., Graca L., Ritz J. Maturation and phenotypic heterogeneity of human CD4+ regulatory T cells from birth to adulthood and after allogeneic stem cell transplantation. Front. Immunol. 2021;11:570550. DOI: 10.3389/fimmu.2020.570550.

30. Abdel-Gadir A., Massoud A.H., Chatila T.A. Antigen-specific Treg cells in immunological tolerance: implications for allergic diseases. F1000Research. 2018;7:1–13. DOI: 10.12688/f1000research.12650.

31. Calzada D., Baos S., Cremades-Jimeno L., Cardaba B. Immunological mechanisms in allergic diseases and allergen tolerance: The role of Treg cells. Hindawi. J. Immunol Res. 2018; 6012053:1–10. DOI: 10.1155/2018/6012053.

32. Roncarolo M.G., Gregpri S., Bacchetta R., Battaglia M., Gagliani N. The biology of T regulatory type 1 cells and their therapeutic application in immune-mediated diseases.Immunity. 2018;49(6):1004–1019. DOI: 10.1016/j.immuni.2018.12.001.

33. Abebe E.C., Dejenie T.A., Ayele T.M., Baye N.D., Teshome A.A., Muche Z.T. The role of regulatory B cells in health and diseases: a systemic review. J. Infamm. Res. 2021;14:75–84. DOI: 10.2147/JIR.S286426.

34. Chiaranunt P., Tai S.L., Ngai L., Mortha A. Beyond immunity: Underappreciated functions of intestinal macrophages. Front. Immunol. 2021;12:749708. DOI: 10.3389/fimmu.2021.749708.

35. Tordesillas L., Berin M.C., Sampson H.A. Immunology of food allergy. Immunity. 2017;47:32–50. DOI: 10.1016/j.immuni.2017.07.004.

36. Yoshida H., Hunter C.A. The immunobiology of interleukin-27. Annu. Rev. Immunol. 2015;33:417–443. DOI: 10.1146/annurev-immunol-032414-112134.

37. Rosskopf S., Jahn-Schmid B., Schmetterer K.G., Ziabinger G.J., Steinberger P. PD-1 has a unique capacity to inhibit allergen-specifc human CD4+ T cell responses. Sci. Rep. 2018;8:13543. DOI: 10.1038/s41598-018-31757-z.

38. Chesné J., Cardoso V., Veiga-Fernandes H. Neuro-immune regulation of mucosal physiology. Mucosal. Immunol. 2019;12:10–20. DOI: 10.1038/s41385-018-0063-y.

39. Chen C.-S., Barnoud C., Scheiermann C. Peripheral neurotransmitters in the immune system. Curr. Opin. Physiol. 2021;19:73–79. DOI: 10.1016/j.cophys.2020.09.009.

40. Ortiz G.G., Loera-Rodriguez L.H., Cruz-Serrano J.A., Torres Sanchez E.D., Mora-Navarro M.A., Delgado-Lara D.L.C. et al. Gut-brain axis: Role of microbiota in Parkinson’s disease and multiple sclerosis. In: AS Artis (ed.) eat, learn, remember. London: IntechOpen, 2018:11–30. DOI: 10.5772/intechopen.79493.

41. Savidge T.C. Epigenetic regulation of enteric neurotransmission by gut bacteria. Front. Cell Neurosci. 2016;9:503. DOI: 10.3389/fncel.2015.00503.

42. Jenkinson S.E., Whawell S.A., Swales B.M., Corps E.M., Kilshaw P.J., Farthing P.M. The aE(CD103) b7 integrin interacts with oral and skin keratinocytes in an E-cadherin-independent manner. Immunology. 2010;132:188–196. DOI: 10.1111/j.1365-2567.2010.03352.x.

43. Sikorska-Szafik H., Sozanska B. Primary prevention of food allergy – environmental protection beyond diet. Nutrients. 2021;13(6):2025. DOI: 10.3390/nu13062025.

44. Rosace D., Gomez-Casado C., Fernandez P., Perez-Gordo M., Dominguez M.D., Vega A. et al. Proflin-mediated food-induced allergic reactions are associated with oral epithelial remodeling. J. Allergy Clin. Immunol. 2019;143(2):P681–690. e1. DOI: 10.1016/j.jaci.2018.03.013.

45. Klimov P.B., O’Connor B. Is permanent parasitism reversible? – critical evidence from early evolution of house dust mites. Syst. Biol. 2013;62(3):411–423. DOI: 10.1093/sysbio/syt008.

46. Mondal M., Klimov P., Flynt A.S. Rewired RNAi-mediated genome surveillance in house dust mites. PLoS Genet. 2018;14(1):e1007183. DOI: 10.1371/journal.pgen.1007183.

47. Valenta R., Campana R., Focke-Tejkl M., Niederberger V. Vaccine development for allergenspecifc immunotherapy based on recombinant allergens and synthetic allergen peptides: lessons from the past and novel mechanisms of action for the future. J. Allergy Clin. Immunol. 2016;137(2):351–357. DOI: 10.1016/j.jaci.2015.12.1299.

48. Chan A., Yu J.E. Food allergy and asthma. J. Food Allergy. 2020;2(1):44–47. DOI: 10.2500/jfa.2020.2.200003.

49. Emons J.A.M., van Wijk G.R. Food allergy and asthma: Is there a link? Curr. Treat Options Allergy. 2018;5:436–444. DOI: 10.1007/s40521-018-0185-1.

50. Tsheppe A., Palmberger D., van Rijt L., Kalic T., Mayr V., Palladino C. et al. Development of a novel Ara h 2 hypoallergen with no IgE binding or anaphylactogenic activity. J. Allergy Clin. Immunol. 2019;145(1):229–238. DOI: 10.1016/j.jaci.2019.08.036.

51. Wang Y.-H., Lue K.-H. Association between sensitized to food allergens and childhood allergic respiratory diseases in Taiwan. J. Microbiol. Immunol. Inf. 2020;53(5):812–820. DOI: 10.1016/j.jmii.2019.01.005.

52. Orengo J.M., Radin A.R., Kamat V., Badithe A., Ben L.H., Bennett B.L. et al. Treating cat allergy with monoclonal IgG antibodies that bind allergen and prevent IgE engagement. Nat. Commun. 2018;9:1421. DOI: 10.1038/s41467-018-03636-8.

53. Gotoh M., Kaminuma O. Sublingual immunotherapy: how sublingual allergen administration heals allergic diseases; current perspective about the mode of action. Pathogens. 2021;10:147. DOI: 10.3390/pathogens10020147.

54. Sood A.K., Scurlock A.M. Food allergy oral immunotherapy. J. Food Allergy. 2020;2(1):75–80. DOI: 10.2500/jfa.2020.2.200005.

55. Du Toit G., Sampson H.A., Plaut M., Burks A.W., Akdis C.A., Lack G. Food allergy: update on prevention and tolerance. J. Allergy Clin. Immunol. 2018;141(1):30–40. DOI: 10.1016/j.jaci.2017.11.010.

56. Tauber A.I., Podolsky S.H. Frank Macfarlane burnet and the immune self (Nobel lecture, 1969). J. Hist .Biol. 1994;27(3):531–573. DOI: 10.1007/BF01058996.

57. Calvani M., Anania C., Caffarelli C., Martelli A., Miraglia Del Giudice M., Cravidi C. et al. Food allergy: an updated review on pathogenesis, diagnosis, prevention and management. Acta Biomed. 2020;15:91. DOI: 10.23750/abm.v91i11-S.10316.

58. Leonard S.A. Food allergy prevention, including early food introduction. J. Food Allergy. 2020;2(1):69–74. DOI: 10.2500/jfa.2020.2.200007.

59. Guttman-Yassky E., Blauvelt A., Eichenfield L.F., Paller A.S., Armstrong A.W., Drew J. et al. Efficacy and safety of lebrikizumab, a high-affinity interleukin-13 inhibitor, in adults with moderate to severe atopic dermatitis: a phase 2b randomized clinical trial. JAMA Dermatol. 2020;156(4):411–420. DOI: 10.1001/jamadermatol.2020.0079.

60. Chong K.W., Ruiz-Garcia M., Patel N., Boyle R.J., Turner P.J. Reaction phenotypes in IgE-mediated food allergy and anaphylaxis. Ann. Allergy Asthma Immunol. 2020;124:473–478. DOI: 10.1016/j.anai.2019.12.023.

61. Assas B.M., Pennock J.I., Miyan J.A. Calcitonin gene-related peptide is a key neurotransmitter in the neuro-immune axis. Front. Neurosci. 2014;8:23. DOI: 10.3389/fnins.2014.00023.

62. Auteri M., Zizzo M.G., Serio R. GABA and GABA receptors in the gastrointestinal tract: from motility to infammation. Pharmacol. Res. 2015;93:11–21. DOI: 10.1016/j.phrs.2014.12.001.

63. Mittal R., Debs L.H., Patel A.P., Nguyen D., Patel K., O’Connor G. et al. Neurotransmitters: the critical modulators regulating gut-brain axis. J. Cell Physiol. 2017;232(9):2359–2372. DOI: 10.1002/jcp.25518.


Review

For citations:


Isaev P.Yu., Urazova O.I., Klimov V.V., Musina M.I., Zagreshenko D.S., Denisov A.A., Kukharev Ya.V., Shkatova A.N., Klimov A.V. Sensitization to food allergies in the context of atopic comorbidity. Bulletin of Siberian Medicine. 2025;24(2):153-161. (In Russ.) https://doi.org/10.20538/1682-0363-2025-2-153-161

Views: 25


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)